Advertisement

Viruses with a Single-Stranded DNA Genome

  • Susanne ModrowEmail author
  • Dietrich Falke
  • Uwe Truyen
  • Hermann Schätzl
Reference work entry

Abstract

Only a few human and animal pathogenic viruses are known that have a single-stranded DNA genome. The members of the family Parvoviridae have a linear genome, whereas the genome of the members of the family Circoviridae and that of the recently created family Anelloviridae have a circular structure. The members of the family Geminiviridae are also characterized by a circular, single-stranded DNA genome, but they infect only plants. Circoviruses are pathogens in both plants and various animal species (monkeys, swine, poultry, etc.). A circular, single-stranded DNA virus, torque teno virus, was first isolated from humans in 1997. Several types of torque teno virus have been detected and classified into the family Anelloviridae; all persist, like the later discovered torque teno mini viruses and the torque teno midi viruses, in most people and various animals without causing any apparent disease.

Keywords

Inverted Terminal Repeat Torque Teno Virus Helper Virus Chicken Anaemia Virus Postweaning Multisystemic Wasting Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Adair BM (2000) Immunopathogenesis of chicken anemia virus infection. Dev Comp Immunol 24:247–255PubMedCrossRefGoogle Scholar
  2. Allan GM, Ellis JA (2000) Porcine circoviruses: a review. J Vet Diagn Invest 12:3–14PubMedCrossRefGoogle Scholar
  3. Allander T, Tammi MT, Eriksson M, Bjerkner A, Tiveljung-Lindell A, Andersson B (2005) Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc Natl Acad Sci USA 102:12891–12896PubMedCrossRefGoogle Scholar
  4. Anderson LJ, Hurwitz ES (1988) Human parvovirus B19 and pregnancy. Clin Perinatol 15:273–286PubMedGoogle Scholar
  5. Arthur JL, Higgins GD, Davidson GP, Givney RC, Ratcliff RM (2009) A novel bocavirus associated with acute gastroenteritis in Australian children. PLoS Pathog 5:e1000391PubMedCrossRefGoogle Scholar
  6. Backendorf C, Visser AE, de Boer AG, Zimmerman R, Visser M, Voskamp P, Zhang YH, Noteborn M (2008) Apoptin: therapeutic potential of an early sensor of carcinogenic transformation. Annu Rev Pharmacol Toxicol 48:143–169PubMedCrossRefGoogle Scholar
  7. Bashir T, Hörlein R, Rommelaere J, Willwand K (2000) Cyclin A activates the DNA polymerase δ-dependent elongation machinery in vitro: a parvovirus DNA replication model. Proc Natl Acad Sci USA 97:5522–5527PubMedCrossRefGoogle Scholar
  8. Batchu RB, Shammas MA, Wang JY, Munshi NC (2001) Dual level inhibition of E2F-1 activity by adeno-associated virus Rep78. J Biol Chem 276:24315–24322PubMedCrossRefGoogle Scholar
  9. Bendinelli M, Pistello M, Maggi F, Fornai C, Freer G, Vatteroni ML (2001) Molecular properties, biology, and clinical implications of TT virus, a recently identified widespread infectious agent of humans. Clin Microbiol Rev 14:98–113PubMedCrossRefGoogle Scholar
  10. Biagini P (2004) Human circoviruses. Vet Microbiol 98:95–101PubMedCrossRefGoogle Scholar
  11. Brown KE, Jonathan MD, Young NS (1993) Erythrocyte P-antigen: cellular receptor for parvovirus B19. Science 262:114–117PubMedCrossRefGoogle Scholar
  12. Brown KE, Young NS, Liu JM (1994) Molecular, cellular and clinical aspects of parvovirus B19 infection. Crit Rev Oncol Hematol 16:1–31PubMedCrossRefGoogle Scholar
  13. Chapman MS, Rossman MG (1993) Structure, sequence and function correlations among parvoviruses. Virology 194:491–508PubMedCrossRefGoogle Scholar
  14. Corbau R, Duverger V, Rommelaere J, Nüesch JP (2000) Regulation of MVM NS1 by protein kinase C: impact of mutagenesis at consensus phosphorylation sites on replicative functions and cytopathic effects. Virology 278:151–167PubMedCrossRefGoogle Scholar
  15. Cotmore SF, Tattersall P (2007) Parvoviral host range and cell entry mechanisms. Adv Virus Res 70:183–232PubMedCrossRefGoogle Scholar
  16. Cotmore SF, Gottlieb RL, Tattersall P (2007) Replication initiator protein NS1 of the parvovirus minute virus of mice binds to modular divergent sites distributed throughout duplex viral DNA. J Virol 81:13015–13027PubMedCrossRefGoogle Scholar
  17. Danen-Van Oorschot AA, van der Eb AJ, Noteborn MH (1999) BCL-2 stimulates apoptin-induced apoptosis. Adv Exp Med Biol 457:245–249PubMedCrossRefGoogle Scholar
  18. Davidson I, Shulman LM (2008) Unraveling the puzzle of human anellovirus infections by comparison with avian infections with the chicken anemia virus. Virus Res 137:1–15PubMedCrossRefGoogle Scholar
  19. Dorsch S, Liebisch G, Kaufmann B, von Landenberg P, Hoffmann JH, Drobnik W, Modrow S (2002) The VP1-unique region of parvovirus B19 and its constituent phospholipase A2-like activity. J Virol 76:2014–2018PubMedCrossRefGoogle Scholar
  20. Fryer JF, Delwart E, Bernardin F, Tuke PW, Lukashov VV, Baylis SA (2007) Analysis of two human parvovirus PARV4 genotypes identified in human plasma for fractionation. J Gen Virol 88:2162–2167PubMedCrossRefGoogle Scholar
  21. Gergely P Jr, Perl A, Poór G (2006) Possible pathogenic nature of the recently discovered TT virus: does it play a role in autoimmune rheumatic diseases? Autoimmun Rev 6:5–9PubMedCrossRefGoogle Scholar
  22. Hino S, Miyata H (2007) Torque teno virus (TTV): current status. Rev Med Virol 17:45–57PubMedCrossRefGoogle Scholar
  23. Hsu TC, Wu WJ, Chen MC, Tsay GJ (2004) Human parvovirus B19 non-structural protein (NS1) induces apoptosis through mitochondria cell death pathway in COS-7 cells. Scand J Infect Dis 36:570–577PubMedCrossRefGoogle Scholar
  24. Kakkola L, Hedman K, Qiu J, Pintel D, Söderlund-Venermo M (2009) Replication of and protein synthesis by TT viruses. Curr Top Microbiol Immunol 331:53–64PubMedCrossRefGoogle Scholar
  25. Kantola K, Hedman L, Allander T, Jartti T, Lehtinen P, Ruuskanen O, Hedman K, Söderlund-Venermo M (2008) Serodiagnosis of human bocavirus infection. Clin Infect Dis 46:540–546PubMedCrossRefGoogle Scholar
  26. Karalar L, Lindner J, Schimanski S, Kertai M, Segerer H, Modrow S (2010) Prevalence and clinical aspects of human bocavirus infection in children. Clin Microbiol Infect 16:633–639PubMedCrossRefGoogle Scholar
  27. Kaufmann B, Chipman PR, Kostyuchenko VA, Modrow S, Rossmann MG (2008) Visualization of the externalized VP2 N termini of infectious human parvovirus B19. J Virol 82:7306–7312PubMedCrossRefGoogle Scholar
  28. King JA, Dubielzig R, Grimm D, Kleinschmidt JA (2001) DNA helicase-mediated packaging of adeno-associated virus type 2 genomes into preformed capsids. EMBO J 20:3282–3291PubMedCrossRefGoogle Scholar
  29. Kleinschmidt JA, Mohler M, Weindler FW, Heilbronn R (1995) Sequence elements of the adeno-associated virus rep gene required for suppression of herpes-simplex-virus-induced DNA amplification. Virology 206:254–262PubMedCrossRefGoogle Scholar
  30. Kooistra K, Zhang YH, Henriquez NV, Weiss B, Mumberg D, Noteborn MH (2004) TT virus-derived apoptosis-inducing protein induces apoptosis preferentially in hepatocellular carcinoma-derived cells. J Gen Virol 85:1445–1450PubMedCrossRefGoogle Scholar
  31. Kotin RM, Linden RM, Berns KI (1992) Characterization of the preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 11:5071–5078PubMedGoogle Scholar
  32. Leary TP, Erker JC, Chalmers ML, Desai SM, Mushahwar IK (1999) Improved detection systems for TT virus reveal high prevalence in humans, non-human primates and farm animals. J Gen Virol 80:2115–2120PubMedGoogle Scholar
  33. Lehmann HW, Knöll A, Küster RM, Modrow S (2003a) Frequent infection with a viral pathogen, parvovirus B19, in rheumatic diseases of childhood. Arthritis Rheum 48:1631–1638PubMedCrossRefGoogle Scholar
  34. Lehmann HW, von Landenberg P, Modrow S (2003b) Parvovirus B19 infection and autoimmune disease. Autoimmun Rev 2:218–223PubMedCrossRefGoogle Scholar
  35. Lin C-L, Kyono W, Tongson J, Chua PK, Easa D, Yanagihara R, Nerurkar VR (2000) Fecal excretion of a novel human circovirus, TT virus in healthy children. Clin Diagn Lab Immunol 7:960–963PubMedGoogle Scholar
  36. Lin F, Guan W, Cheng F, Yang N, Pintel D, Qiu J (2008) ELISAs using human bocavirus VP2 virus-like particles for detection of antibodies against HBoV. J Virol Methods 149:110–117PubMedCrossRefGoogle Scholar
  37. Lindner J, Modrow S (2008) Human bocavirus – a novel parvovirus to infect humans. Intervirology 51:116–122PubMedCrossRefGoogle Scholar
  38. Lu J, Zhi N, Wong S, Brown KE (2006) Activation of synoviocytes by the secreted phospholipase A2 motif in the VP1-unique region of parvovirus B19 minor capsid protein. J Infect Dis 193:582–590PubMedCrossRefGoogle Scholar
  39. Mankertz A, Hillenbrand B (2001) Replication of porcine circovirus type 1 requires two proteins encoded by the viral rep gene. Virology 279:429–438PubMedCrossRefGoogle Scholar
  40. Mankertz A, Persson F, Mankertz J, Blaess G, Buhk HJ (1997) Mapping and characterization of the origin of DNA replication of porcine circovirus. J Virol 71:2562–2566PubMedGoogle Scholar
  41. Manteufel J, Truyen U (2008) Animal bocaviruses: a brief review. Intervirology 51:328–334PubMedCrossRefGoogle Scholar
  42. Miller MM, Schat KA (2004) Chicken infectious anemia virus: an example of the ultimate host-parasite relationship. Avian Dis 48:734–745PubMedCrossRefGoogle Scholar
  43. Miyata H, Tsunoda H, Kazi A, Yamada A, Ali Khan M, Murakami J, Kamahora T, Shiraki K, Hino S (1999) Identification of a novel GC-rich 113 nucleotide region to complete the circular, single-stranded DNA genome of TT virus, the first human circovirus. J Virol 73:3582–3586PubMedGoogle Scholar
  44. Morey A, Ferguson D, Fleming KA (1993) Ultrastructural features of fetal erythroid precursors infected with parvovirus B19 in vitro: evidence of cell death by apoptosis. J Pathol 169:213–220PubMedCrossRefGoogle Scholar
  45. Naides SJ, Karetnyi YV, Cooling LLW, Mark RS, Langnas AN (1996) Human parvovirus B19 infection and hepatitis. Lancet 347:1563–1564PubMedCrossRefGoogle Scholar
  46. Nakashima A, Morita E, Saito S, Sugamura K (2004) Human Parvovirus B19 nonstructural protein transactivates the p21/WAF1 through Sp1. Virology 329:493–504PubMedCrossRefGoogle Scholar
  47. Naoumov NV (2000) TT virus – highly prevalent, but still in search of a disease. J Hepatol 33:157–159PubMedCrossRefGoogle Scholar
  48. Nishizawa T, Okamoto H, Konishi K, Yoshizawa H, Miyakawa Y, Mayumi M (1997) A novel DNA virus (TTV) associated with elevated transaminase levels in posttransfusion hepatitis of unknown etiology. Biochem Biophys Res Commun 241:92–97PubMedCrossRefGoogle Scholar
  49. Norja P, Hokynar K, Aaltonen LM, Chen R, Ranki A, Partio EK, Kiviluoto O, Davidkin I, Leivo T, Eis-Hübinger AM, Schneider B, Fischer HP, Tolba R, Vapalahti O, Vaheri A, Söderlund-Venermo M, Hedman K (2006) Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci USA 103:7450–7453PubMedCrossRefGoogle Scholar
  50. Nüesch JP, Rommelaere J (2007) A viral adaptor protein modulating casein kinase II activity induces cytopathic effects in permissive cells. Proc Natl Acad Sci USA 104:12482–12487PubMedCrossRefGoogle Scholar
  51. Okamoto H, Fukuda M, Tawara M, Nishizawa T, Itoh Y, Hayasaka I, Tsuda F, Tanaka T, Miyakawa Y, Mayumi M (2000) Species-specific TT viruses and cross-species infection in non-human primates. J Virol 74:1132–1139PubMedCrossRefGoogle Scholar
  52. Parker JS, Murphy WJ, Wang D, O’Brien SJ, Parrish CR (2001) Canine and feline parvoviruses can use human or feline transferrin receptors to bind, enter, and infect cells. J Virol 75:3896–3902PubMedCrossRefGoogle Scholar
  53. Parrish CR, Aquadro CF, Strassheim ML, Evermann JF, Sgro JY, Mohammed HO (1991) Rapid antigenic-type replacement and DNA sequence evolution of canine parvovirus. J Virol 65:6544–6552PubMedGoogle Scholar
  54. Qing K, Mah C, Hansen J, Zhou S, Dwarki V, Srivastava A (1999) Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat Med 5:71–77PubMedCrossRefGoogle Scholar
  55. Qiu J, Brown KE (1999) A 110-kDa nuclear shuttle protein, nucleolin, specifically binds to adeno-associated virus type 2 (AAV-2) capsid. Virology 257:373–382PubMedCrossRefGoogle Scholar
  56. Röhrer C, Gärtner B, Sauerbrei A, Böhm S, Hottenträger B, Raab U, Thierfelder W, Wutzler P, Modrow S (2008) Seroprevalence of parvovirus B19 in the German population. Epidemiol Infect 16:1–12Google Scholar
  57. Rovira A, Balasch M, Segales J, Garcia L, Plana-Duran J, Rosell C, Ellerbrok H, Mankertz A, Domingo M (2002) Experimental inoculation of conventional pigs with porcine reproductive and respiratory syndrome virus and porcine circovirus 2. J Virol 76:3232–3239PubMedCrossRefGoogle Scholar
  58. Saudan P, Vlach J, Beard P (2000) Inhibition of S-phase progression by adeno-associated virus Rep78 protein is mediated by hypophosphorylated pRb. EMBO J 19:4351–4361PubMedCrossRefGoogle Scholar
  59. Schmidt M, Afione S, Kotin RM (2000) Adeno-associated virus type 2 Rep78 induces apoptosis through caspase activation independently of p53. J Virol 74:9441–9450PubMedCrossRefGoogle Scholar
  60. Shackelton LA, Parrish CR, Truyen U, Holmes EC (2005) High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc Natl Acad Sci USA 102:379–384PubMedCrossRefGoogle Scholar
  61. Smith RH, Kotin RM (2000) An adeno-associated virus (AAV) initiator protein, Rep78, catalyzes the cleavage and ligation of single-strand AAV ori DNA. J Virol 74:3122–3129PubMedCrossRefGoogle Scholar
  62. Steinel A, Parrish CR, Bloom ME, Truyen U (2001) Parvovirus infections in wild carnivores. J Wildl Dis 37:594–607PubMedGoogle Scholar
  63. Summerford C, Bartlett JS, Samulski RJ (1999) AlphaVbeta5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 5:78–82PubMedCrossRefGoogle Scholar
  64. Takahashi K, Hijikata M, Samokhvalov EI, Mishiro S (2000) Full or near full length nucleotide sequences of TT virus variants (types SANBAN and YONBAN) and the TT virus-like mini virus. Intervirology 43:119–123PubMedCrossRefGoogle Scholar
  65. Takasawa N, Munakata Y, Ishii KK, Takahashi Y, Takahashi M, Fu Y, Ishii T, Fujii H, Saito T, Takano H, Noda T, Suzuki M, Nose M, Zolla-Pazner S, Sasaki T (2004) Human parvovirus B19 transgenic mice become susceptible to polyarthritis. J Immunol 173:4675–4683PubMedGoogle Scholar
  66. Thacker TC, Johnson FB (1998) Binding of bovine parvovirus to erythrocyte membrane sialylglycoproteins. J Gen Virol 79:2163–2169PubMedGoogle Scholar
  67. Todd D, McNulty MS, Adair BM, Allan GM (2001) Animal circoviruses. Adv Virus Res 57:1–70PubMedCrossRefGoogle Scholar
  68. Truyen U, Gruenberg A, Chang SF, Obermaier B, Veijalainen P, Parrish CR (1995) Evolution of the feline-subgroup parvoviruses and the control of canine host range in vivo. J Virol 69:4702–4710PubMedGoogle Scholar
  69. Truyen U, Everman JF, Vieler E, Parrish CR (1996) Evolution of canine parvovirus involved loss and gain of feline host range. Virology 215:186–189PubMedCrossRefGoogle Scholar
  70. Tsao J, Chapman MS, Agbandja M, Keller W, Smith K, Wu H, Luo M, Smith TM, Rossman M, Compans RW, Parrish CR (1991) The three-dimensional structure of canine parvovirus and its functional implications. Science 251:1456–1464PubMedCrossRefGoogle Scholar
  71. Tzang BS, Lee YJ, Yang TP, Tsay GJ, Shi JY, Tsai CC, Hsu TC (2007) Induction of antiphospholipid antibodies and antiphospholipid syndrome-like autoimmunity in naive mice with antibody against human parvovirus B19 VP1 unique region protein. Clin Chim Acta 382:31–36PubMedCrossRefGoogle Scholar
  72. Verschoor EJ, Langenhuijzen S, Heeney JL (1999) TT viruses (TTV) of non-human primates and their relationship to the human TTV genotypes. J Gen Virol 80:2491–2499PubMedGoogle Scholar
  73. von Landenberg P, Lehmann HW, Knöll A, Dorsch S, Modrow S (2003) Antiphospholipid antibodies in pediatric and adult patients with rheumatic disease are associated with parvovirus B19 infection. Arthritis Rheum 48:1939–1947CrossRefGoogle Scholar
  74. von Poblotzki A, Hemauer A, Gigler A, Puchhammer-Stöcke E, Heinz F-X, Pont J, Laczika K, Wolf H, Modrow S (1995) Antibodies to the nonstructural protein of parvovirus B19 in persistently infected patients: implications for pathogenesis. J Infect Dis 172:1356–1359CrossRefGoogle Scholar
  75. Walters RA, Yi SMP, Keshavjee S, Brown KE, Welsh MJ, Chorioni JA, Zabner J (2001) Binding of adeno-associated virus type 5 to 2,3-linked sialic acid is required for gene transfer. J Biol Chem 276:20610–20616PubMedCrossRefGoogle Scholar
  76. Weger S, Wendland M, Kleinschmidt JA, Heilbronn R (1999) The adeno-associated virus type 2 regulatory proteins rep78 and rep68 interact with the transcriptional coactivator PC4. J Virol 73:260–269PubMedGoogle Scholar
  77. Wonderling RS, Kyostio SR, Owens RA (1995) A maltose-binding protein/adeno-associated virus rep68 fusion protein has DNA-RNA helicase and ATPase activity. J Virol 69:3542–3548PubMedGoogle Scholar
  78. Young SM Jr, McCarty DM, Degtyareva N, Samulski RJ (2000) Roles of adeno-associated virus Rep protein and human chromosome 19 in site-specific recombination. J Virol 74:3953–3966PubMedCrossRefGoogle Scholar
  79. Zhi N, Mills IP, Lu J, Wong S, Filippone C, Brown KE (2006) Molecular and functional analyses of a human parvovirus B19 infectious clone demonstrates essential roles for NS1, VP1, and the 11-kilodalton protein in virus replication and infectivity. J Virol 80:5941–5950PubMedCrossRefGoogle Scholar
  80. zur Hausen H, de Villiers EM (2009) TT viruses: oncogenic or tumorsuppressive properties? Curr Top Microbiol Immunol 331:109–116PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susanne Modrow
    • 1
    Email author
  • Dietrich Falke
    • 2
  • Uwe Truyen
    • 3
  • Hermann Schätzl
    • 4
  1. 1.Inst. Medizinische, Mikrobiologie und HygieneUniversität RegensburgRegensburgGermany
  2. 2.MainzGermany
  3. 3.Veterinärmedizinische Fak., Inst. Tierhygiene undUniversität LeipzigLeipzigGermany
  4. 4.Helmholtz Zentrum München, Institut für VirologieTU MünchenMünchenGermany

Personalised recommendations