Viruses with Single-Stranded RNA Genomes and Double-Stranded DNA as an Intermediate Product

  • Susanne ModrowEmail author
  • Dietrich Falke
  • Uwe Truyen
  • Hermann Schätzl
Reference work entry


Retroviruses were described for the first time about 100 years ago: in 1908, Vilhelm Ellermann and Oluf Bang demonstrated the transmission of avian leucosis by cell-free filtrates; shortly afterwards, Peyton Rous discovered that avian sarcoma can be transmitted to healthy chickens by using filtered cell-free tumour extracts in 1911. Thanks to this discovery, he was awarded the Nobel Prize in Physiology or Medicine in 1966, and the retrovirus contained in the extracts has been named Rous sarcoma virus. Further evidence that retroviruses may cause tumours was provided by John J. Bittner through his research on the development of malignant mammary neoplasms in mice in 1936. He described mouse mammary tumour virus as the causative agent of the disease. This virus also displayed a previously unknown transmission mode: mouse mammary tumour virus is not only transmitted as an infectious, exogenous particle that is released by the cell (horizontal transmission), but it can also be passed on to the next generation as an endogenous constituent of the genome of germ-line cells (vertical transmission).


Human Immunodeficiency Virus Long Terminal Repeat Acquire Immune Deficiency Syndrome Feline Immunodeficiency Virus Bovine Leukaemia Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Keele BF, Giorgi EE, Salazar-Gonzalez JF, Decker JM, Pham KT, Salazar MG, Sun C, Grayson T, Wang S, Li H, Wei X, Jiang C, Kirchherr JL, Gao F, Anderson JA, Ping LH, Swanstrom R, Tomaras GD, Blattner WA, Goepfert PA, Kilby JM, Saag MS, Delwart EL, Busch MP, Cohen MS, Montefiori DC, Haynes BF, Gaschen B, Athreya GS, Lee HY, Wood N, Seoighe C, Perelson AS, Bhattacharya T, Korber BT, Hahn BH, Shaw GM (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci USA 105:7552–7557PubMedCrossRefGoogle Scholar

Further Reading

  1. Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, Dauguet C, Axler-Blin C, Vézinet-Brun F, Rouzioux C, Rozenbaum W, Montagnier L (1983) Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220:868–887PubMedCrossRefGoogle Scholar
  2. Bieniasz PD (2009) The cell biology of HIV-1 virion genesis. Cell Host Microbe 5:550–558PubMedCrossRefGoogle Scholar
  3. Carter CA, Ehrlich LS (2008) Cell biology of HIV-1 infection of macrophages. Annu Rev Microbiol 62:425–443PubMedCrossRefGoogle Scholar
  4. Cohen MS, Hellmann N, Levy JA, DeCock K, Lange J (2008) The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. J Clin Invest 118:1244–1254PubMedCrossRefGoogle Scholar
  5. de Jong MA, Geijtenbeek TB (2009) Human immunodeficiency virus-1 acquisition in genital mucosa: Langerhans cells as key-players. J Intern Med 265:18–28PubMedCrossRefGoogle Scholar
  6. Deora A, Ratner L (2001) Viral protein U (Vpu)-mediated enhancement of human immunodeficiency virus type 1 particle release depends on the rate of cellular proliferation. J Virol 75:6714–6718PubMedCrossRefGoogle Scholar
  7. Frankel AD, Young JAT (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25PubMedCrossRefGoogle Scholar
  8. Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18:203–217PubMedCrossRefGoogle Scholar
  9. Henriet S, Mercenne G, Bernacchi S, Paillart JC, Marquet R (2009) Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors. Microbiol Mol Biol Rev 73:211–232PubMedCrossRefGoogle Scholar
  10. Hosie MJ, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, Lloret A, Lutz H, Marsilio F, Pennisi MG, Radford AD, Thiry E, Truyen U, Horzinek MC (2009) Feline immunodeficiency. ABCD guidelines on prevention and management. J Feline Med Surg 11:575–584PubMedCrossRefGoogle Scholar
  11. Johnson JM, Harrod R, Franchini G (2001) Molecular biology and pathogenesis of the human T-cell leukemia/lymphotropic virus type 1 (HTLV-1). Int J Exp Pathol 82:135–147PubMedCrossRefGoogle Scholar
  12. Keele BF, Jones JH, Terio KA, Estes JD, Rudicell RS, Wilson ML, Li Y, Learn GH, Beasley TM, Schumacher-Stankey J, Wroblewski E, Mosser A, Raphael J, Kamenya S, Lonsdorf EV, Travis DA, Mlengeya T, Kinsel MJ, Else JG, Silvestri G, Goodall J, Sharp PM, Shaw GM, Pusey AE, Hahn BH (2009) Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature 460:515–519PubMedCrossRefGoogle Scholar
  13. Khan AS (2009) Simian foamy virus infection in humans: prevalence and management. Expert Rev Antiinfect Ther 7:569–580CrossRefGoogle Scholar
  14. Khan MA, Aberham C, Kao S, Akari H, Gorelick R, Bour S, Strebel K (2001) Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. J Virol 75:7252–7265PubMedCrossRefGoogle Scholar
  15. Kirchhoff F, Schindler M, Specht A, Arhel N, Münch J (2008) Role of Nef in primate lentiviral immunopathogenesis. Cell Mol Life Sci 65:2621–2636PubMedCrossRefGoogle Scholar
  16. Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659PubMedCrossRefGoogle Scholar
  17. Levy JA (2009) HIV pathogenesis: 25 years of progress and persistent challenges. AIDS 23:147–160PubMedCrossRefGoogle Scholar
  18. Linial ML (1999) Foamy viruses are unconventional retroviruses. J Virol 73:1747–1755PubMedGoogle Scholar
  19. Mack M, Kleinschmidt A, Brühl H, Klier C, Nelson PJ, Cihak J, Plachy J, Stangassinger M, Erfle V, Schlöndorff D (2000) Transfer of chemokine receptor CCR5 between cells by membrane derived microparticles: a mechanism for cellular immunodeficiency virus 1 infection. Nat Med 6:769–775PubMedCrossRefGoogle Scholar
  20. Maeda N, Fan H, Yoshikai Y (2008) Oncogenesis by retroviruses: old and new paradigms. Rev Med Virol 18:387–405PubMedCrossRefGoogle Scholar
  21. Masur H, Michelis MA, Greene JB, Onorata I, Van de Stouwe RA, Holzmann RS, Wormser G, Brettmann L, Lange M, Murray HW, Cunningham-Rundles S (1981) An outbreak of community-acquired Pneumocystis carinii pneumonia: initial manifestation of cellular immune dysfunction. N Engl J Med 305:1431–1438PubMedCrossRefGoogle Scholar
  22. Münch J, Rücker E, Ständker L, Adermann K, Goffinet C, Schindler M, Wildum S, Chinnadurai R, Rajan D, Specht A, Giménez-Gallego G, Sánchez PC, Fowler DM, Koulov A, Kelly JW, Mothes W, Grivel JC, Margolis L, Keppler OT, Forssmann WG, Kirchhoff F (2007) Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 131:1059–1071PubMedCrossRefGoogle Scholar
  23. Pierson T, McArthur J, Siliciano RF (2000) Reservoirs for HIV-1: mechanisms for viral persistence in the presence of antiviral immune response and antiviral therapy. Annu Rev Immunol 18:665–708PubMedCrossRefGoogle Scholar
  24. Poiesz BJ, Ruscetti FW, Gazdar AF, Bunn PA, Minna JD, Gallo RC (1980) Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci USA 77:7415–7419PubMedCrossRefGoogle Scholar
  25. Poignard P, Saphire EO, Parren PWHI, Burton DR (2001) Gp120: biological aspects of structural features. Annu Rev Immunol 19:253–274PubMedCrossRefGoogle Scholar
  26. Pollard VW, Maim MH (1998) The HIV-1 Rev protein. Annu Rev Microbiol 52:491–532PubMedCrossRefGoogle Scholar
  27. Popov S (1998) Viral protein R regulates nuclear import of the HIV-1 preintegration complex. EMBO J 17:909–917PubMedCrossRefGoogle Scholar
  28. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber C-M, Saragosti S, Lapouméroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR5 chemokine receptor gene. Nature 382:722–725PubMedCrossRefGoogle Scholar
  29. Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 385:693–713PubMedCrossRefGoogle Scholar
  30. Shuh M, Beilke M (2005) The human T-cell leukemia virus type 1 (HTLV-1): new insights into the clinical aspects and molecular pathogenesis of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM). Microsc Res Tech 68:176–196PubMedCrossRefGoogle Scholar
  31. Tachet A, Dulioust E, Salmon D, De Almeida M, Rivalland S, Finkielsztejn L, Heard I, Jouannet P, Sicard D, Rouzioux C (1999) Detection and quantification of HIV-1 in semen: identification of a subpopulation of men at high potential risk of viral sexual transmission. AIDS 13:823–831PubMedCrossRefGoogle Scholar
  32. Thomas JA, Gorelick RJ (2008) Nucleocapsid protein function in early infection processes. Virus Res 134:39–63PubMedCrossRefGoogle Scholar
  33. Vaishnav Y, Wong-Staal F (1991) The biochemistry of AIDS. Annu Rev Biochem 60:577–630PubMedCrossRefGoogle Scholar
  34. Yoshida M (2001) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19:475–496PubMedCrossRefGoogle Scholar
  35. Yu SF, Baldwin DN, Gwynn SR, Yendapalli S, Linial ML (1996) Human foamy virus replication: a pathway distinct from that of retroviruses and hepadnaviruses. Science 271:1579–1582PubMedCrossRefGoogle Scholar
  36. Zennou V (2000) HIV-1 genome nuclear import is mediated by a central DNA flap. Cell 101:173–185PubMedCrossRefGoogle Scholar
  37. Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, Grisé H, Ofek GA, Taylor KA, Roux KH (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 15:847–852CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susanne Modrow
    • 1
    Email author
  • Dietrich Falke
    • 2
  • Uwe Truyen
    • 3
  • Hermann Schätzl
    • 4
  1. 1.Inst. Medizinische, Mikrobiologie und HygieneUniversität RegensburgRegensburgGermany
  2. 2.MainzGermany
  3. 3.Veterinärmedizinische Fak., Inst. Tierhygiene undUniversität LeipzigLeipzigGermany
  4. 4.Helmholtz Zentrum München, Institut für VirologieTU MünchenMünchenGermany

Personalised recommendations