Advertisement

Viruses with Single-Stranded, Segmented, Negative-Sense RNA Genomes

  • Susanne ModrowEmail author
  • Dietrich Falke
  • Uwe Truyen
  • Hermann Schätzl
Reference work entry

Abstract

There are three virus families containing a negative-sense RNA genome, which does not exist as a continuous molecule, but is present in several segments. These are the families Arenaviridae, Bunyaviridae and Orthomyxoviridae. Similarly to members of the order Mononegavirales ( Chap. 15), they also require the presence of a special enzyme (RNA-dependent RNA polymerase) to perform the synthesis and replication of messenger RNA (mRNA); it reaches the cell along with other viral components during infection. A segmented genome enables the virus to generate reassortants. In this process, the RNA molecules of different virus strains are mixed or reshuffled in doubly infected cells during replication and morphogenesis. In this way, progeny viruses can obtain new combinations of RNA segments and thus gain novel properties. This mechanism, which is referred to as antigenic shift, is particularly common and well studied in influenza A viruses, the causative agents of viral influenza or genuine flu (Sect. 16.3).

Keywords

Influenza Virus Rift Valley Fever Virus Infectious Salmon Anaemia Virus Lassa Fever Hantaan Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Colman PM (1989) In: Krug RM (ed) The influenza viruses. Plenum, New York, p 189Google Scholar
  2. Lamb RA, Krug RM (1996) In: Fields BN, Knipe DM, Howley PM, Chanock RM (eds) Fields Virology, 3rd edn. Lippincot Williams & Wilkins, Philadelphia, vol. 1, p 1361Google Scholar
  3. Wharton SA et al (1989) In: Krug RM (ed) The influenza viruses. Plenum, New York, p 135Google Scholar

Further Reading

  1. Accardi L, Prehaud C, Di Bonito P, Mochi S, Bouloy M, Giorgi C (2001) Activity of Toscana and Rift Valley fever virus transcription complexes and heterologous templates. J Gen Virol 82:781–785PubMedGoogle Scholar
  2. Alff PJ, Gavrilovskaya IN, Gorbunova E, Endriss K, Chong Y, Geimonen E, Sen N, Reich NC, Mackow ER (2006) The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I- and TBK-1-directed interferon responses. J Virol 80:9676–9686PubMedCrossRefGoogle Scholar
  3. Barton LL, Mets MB (2001) Congenital lymphocytic choriomeningitis virus infection: decade of rediscovery. Clin Infect Dis 33:370–374PubMedCrossRefGoogle Scholar
  4. Battegay M, Meskopleidis D, Rahentulla A, Hengartner H, Mak TW, Zinkernagel R (1994) Enhanced establishment of a virus carrier state in adult CD4+ T-cell deficient mice. J Virol 68:4700–4704PubMedGoogle Scholar
  5. Billecocq A, Spiegel M, Vialat P, Kohl A, Weber F, Bouloy M, Haller O (2004) NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. J Virol 78:9798–9806PubMedCrossRefGoogle Scholar
  6. Bird B, Albarino CG, Hartman AL, Erickson BR, Ksiazek TG, Nichol ST (2008) Rift Valley fever virus lacking the NSs and NSm genes is highly attenuated, confers protective immunity from virulent virus challenge, and allows for differential identification of infected and vaccinated animals. J Virol 82:2681–2691PubMedCrossRefGoogle Scholar
  7. Blakqori G, Weber F (2005) Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. J Virol 79:10420–10428PubMedCrossRefGoogle Scholar
  8. Borden KLB, CampbellDwyer EJ, Carlile GW, Djavani M, Salvato MS (1998) Two RING finger proteins, the oncoprotein PML and arenavirus Z protein, colocalize with the nuclear fraction of ribosomal P proteins. J Virol 72:3819–3826PubMedGoogle Scholar
  9. Bouloy M, Janzen C, Vialat P, Khun H, Pavlovic J, Huerre M, Haller O (2001) Genetic evidence for an interferon-antagonistic function of Rift Valley fever virus nonstructural protein NSs. J Virol 75:1371–1377PubMedCrossRefGoogle Scholar
  10. Bowen MD, Rollin PE, Ksiazek TG, Hustad HL, Bausch DG, Demby AH, Bajani MD, Peters CJ, Nichol ST (2000) Genetic diversity among Lassa virus strains. J Virol 74:6992–7004PubMedCrossRefGoogle Scholar
  11. Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza virus hemagglutinin at the pH of membrane fusion. Nature 371:37–43PubMedCrossRefGoogle Scholar
  12. Butz EA, Southern PJ (1994) Lymphocytic choriomeningitis virus-induced immune dysfunction: induction of and recovery from T-cell anergy in adult infected mice. J Virol 68:8477–8480PubMedGoogle Scholar
  13. Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MBA (1998) Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science 282:2079–2081PubMedCrossRefGoogle Scholar
  14. Castillo C, Nicklas C, Mardones J, Ossa G (2007) Andes hantavirus as possible cause of disease in travellers to South America. Travel Med Infect Dis 5:30–34PubMedCrossRefGoogle Scholar
  15. Centers for Disease Control and Prevention (2008) Lymphocytic choriomeningitis virus transmitted through solid organ transplantation – Massachusetts, 2008. MMWR 57:799–801Google Scholar
  16. Charrel RN, de Lamballerie X (2003) Arenaviruses other than Lassa virus. Antiviral Res 57:89–100PubMedCrossRefGoogle Scholar
  17. Chen W, Calvo PA, Malide D, Gibbs Y, Schubert U, Bacik J, Basta S, O’Neill R, Schickli J, Paleso P, Henklein P, Bennink JR, Yewdell JW (2001) A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 7:1306–1312PubMedCrossRefGoogle Scholar
  18. Cohen J (2009) Pandemic influenza. Straight from the pig’s mouth: swine research with swine influenzas. Science 325:140–141PubMedCrossRefGoogle Scholar
  19. Cohen J, Enserink M (2009) Swine flu. After delays, WHO agrees: the 2009 pandemic has begun. Science 324:1496–1497PubMedCrossRefGoogle Scholar
  20. Cornu TI, Feldmann H, de la Torre JC (2004) Cells expressing the RING finger Z protein are resistant to arenavirus infection. J Virol 78:2979–2983PubMedCrossRefGoogle Scholar
  21. Conenello GM, Palese P (2007) Influenza A virus PB1-F2: a small protein with a big punch. Cell Host Microbe 2:207–209PubMedCrossRefGoogle Scholar
  22. Conenello GM, Zamarin D, Perrone LA, Tumpey T, Palese P (2007) A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog 3:1414–1421PubMedCrossRefGoogle Scholar
  23. Crawford PC, Dubovi EJ, Castleman WL, Stephenson I, Gibbs EPJ, Chen L, Smith C, Hill RC, Ferro P, Pompey J, Bright RA, Medina M-J, Influenza Virus Genomics Group, Johnson CM, Olsen CW, Cox NJ, Klimov AI, Katz JM, Donis RO (2005) Transmission of equine influenza virus to dogs. Science 310:482–485PubMedCrossRefGoogle Scholar
  24. Deyde VM, Rizvanov AA, Chase J, Otteson EW, St Jeor SC (2005) Interactions and trafficking of Andes and Sin Nombre hantavirus glycoproteins G1 and G2. Virology 331:307–315PubMedCrossRefGoogle Scholar
  25. de Jong MD, Tran TT, Truong HK, Vo MH, Smith GJ, Nguyen VC, Bach VC, Phan TQ, Do QH, Guan Y, Peiris JS, Tran TH, Farrar J (2005) Oseltamivir resistance during treatment of influenza A (H5N1) infection. N Engl J Med 353:2667–2672PubMedCrossRefGoogle Scholar
  26. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531PubMedCrossRefGoogle Scholar
  27. Dowdle WR (1999) Influenza A virus revisited. Bull World Health Organ 77:820–828PubMedGoogle Scholar
  28. Eichler R, Lenz O, Strecker T, Eickmann M, Klenk HD, Garten W (2003) Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep 4:1084–1088PubMedCrossRefGoogle Scholar
  29. Eichler R, Strecker T, Kolesnikova L, ter Meulen J, Weissenhorn W, Becker S, Klenk HD, Garten W, Lenz O (2004) Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Res 100:249–255PubMedCrossRefGoogle Scholar
  30. Eschli B, Quirin K, Wepf A, Weber J, Zinkernagel R, Hengartner H (2006) Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class I viral fusion proteins. J Virol 80:5897–5907PubMedCrossRefGoogle Scholar
  31. Fischer SA, Graham MB, Kuehnert MJ, Kotton CN, Srinivasan A, Marty FM, Comer JA, Guarner J, Paddock CD, DeMeo DL, Shieh WJ, Erickson BR, Bandy U, DeMaria A Jr, Davis JP, Delmonico FL, Pavlin B, Likos A, Vincent MJ, Sealy TK, Goldsmith CS, Jernigan DB, Rollin PE, Packard MM, Patel M, Rowland C, Helfand RF, Nichol ST, Fishman JA, Ksiazek T, Zaki SR (2006) LCMV in transplant recipients investigation team. Transmission of lymphocytic choriomeningitis virus by organ transplantation. N Engl J Med 354:2235–2249PubMedCrossRefGoogle Scholar
  32. Fischer SA (2008) Emerging viruses in transplantation: there is more to infection after transplant than CMV and EBV. Transplantation 86:1327–1339PubMedCrossRefGoogle Scholar
  33. Fontana J, Lopez-Montero N, Elliott RM, Fernandez JJ, Risco C (2008) The unique architecture of Bunyamwera virus factories around the Golgi complex. Cell Microbiol 10:2012–2028PubMedCrossRefGoogle Scholar
  34. Fouchier RAM, Munster V, Wallenstein A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus ADME (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79:2814–2822PubMedCrossRefGoogle Scholar
  35. Gabriel G, Herwig A, Klenk HD (2008) Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog 4:e11PubMedCrossRefGoogle Scholar
  36. Garcia-Robles I, Akarsu H, Müller CW, Ruigrok RW, Baudin F (2005) Interaction of influenza virus proteins with nucleosomes. Virology 332:329–336PubMedCrossRefGoogle Scholar
  37. Garcia-Sastre A (2001) Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses. Virology 279:375–384PubMedCrossRefGoogle Scholar
  38. Günther S, Emmerich P, Laue T, Kühle O, Asper M, Jung A, Grewing T, ter Meulen J, Schmitz H (2000) Imported Lassa fever in Germany: molecular characterization of a new Lassa virus strain. Emerg Infect Dis 6:466–476PubMedCrossRefGoogle Scholar
  39. Haller O, Frese M, Kochs G (1998) Mx proteins: mediators of innate resistance to RNA viruses. Rev Sci Tech 17:220–230PubMedGoogle Scholar
  40. Haller O, Kochs G (2002) Thogotovirus. In: Tidona CA, Darai G (eds) The Springer index of viruses. Springer, Berlin, pp 615–619CrossRefGoogle Scholar
  41. Hara K, Shiota M, Kido H, Ohtsu Y, Kashiwagi T, Iwahashi J, Hamada N, Mizoue K, Tsumura N, Kato H, Toyoda T (2001) Influenza virus RNA polymerase PA subunit is a novel serine protease with Ser624 at the active site. Genes Cells 6:87–97PubMedCrossRefGoogle Scholar
  42. Hatta M, Kawaoka Y (2002) The continued pandemic threat posed by avian influenza viruses in Hong Kong. Trends Microbiol 10:340–344PubMedCrossRefGoogle Scholar
  43. Hatta M, Kawaoka Y (2003) The NB protein of influenza B virus is not necessary for virus replication in vitro. J Virol 77:6050–6054PubMedCrossRefGoogle Scholar
  44. Herrler G, Klenk HD (1991) Structure and function of the HEF glycoprotein of influenza C virus. Adv Virus Res 40:213–234PubMedCrossRefGoogle Scholar
  45. Honig JE, Osborne JC, Nichol ST (2004) Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology 321:29–35PubMedCrossRefGoogle Scholar
  46. Ikegami T, Won S, Peters CJ, Makino S (2006) Rescue of infectious Rift Valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. J Virol 80:2933–2940PubMedCrossRefGoogle Scholar
  47. Ison MG, Gubareva LV, Atmar RL, Treanor J, Hayden FG (2006) Recovery of drug-resistant influenza virus from immunocompromised patients: a case series. J Infect Dis 193:760–764PubMedCrossRefGoogle Scholar
  48. Kaukinen P, Vaheri A, Plyusnin A (2005) Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. Arch Virol 150:1693–1713PubMedCrossRefGoogle Scholar
  49. Khaiboullina SF, Rizvanov AA, Deyde VM, St Jeor SC (2005) Andes virus stimulates interferon-inducible MxA protein expression in endothelial cells. J Med Virol 75:267–275PubMedCrossRefGoogle Scholar
  50. Klenk HD (2005) Infection of the endothelium by influenza viruses. Thromb Haemost 94:262–265PubMedGoogle Scholar
  51. Klenk HD, Garten W (1994) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2:39–43PubMedCrossRefGoogle Scholar
  52. Kochs G, Janzen C, Hohenberg H, Haller O (2002) Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc Natl Acad Sci USA 99:3153–3158PubMedCrossRefGoogle Scholar
  53. Kohl A, Lowen AC, Leonard VH, Elliott RM (2006) Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome. J Gen Virol 87:177–187PubMedCrossRefGoogle Scholar
  54. Krug RM (ed) (1989) The influenza viruses. Plenum, New YorkGoogle Scholar
  55. Krug RM, Yuan W, Noah DL, Latham AG (2003) Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309:181–189PubMedCrossRefGoogle Scholar
  56. Kukkonen SK, Vaheri A, Plyusnin A (2005) L protein, the RNA-dependent RNA polymerase of hantaviruses. Arch Virol 150:533–556PubMedCrossRefGoogle Scholar
  57. Kunz S, Rojek JM, Perez M, Spiropoulou CF, Oldstone MBA (2005) Characterization of the interaction of Lassa fever virus with its cellular receptor alpha-dystroglycan. J Virol 79:5979–5987PubMedCrossRefGoogle Scholar
  58. Lisieux T, Coimbra M, Nassar ES, Burattini MN, de Souza TL, Ferreira I, Rocco IM, da Rose AP, Vasconcelos PF, Pinheiro FP (1994) New arenavirus isolated in Brazil. Lancet 343:391–392PubMedCrossRefGoogle Scholar
  59. Ludwig S, Pleschka S, Planz O, Wolff T (2006) Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. Cell Microbiol 8:375–386PubMedCrossRefGoogle Scholar
  60. Maes P, Clement J, Gavrilovskaya I, Van Ranst M (2004) Hantaviruses: immunology, treatment, and prevention. Viral Immunol 17:481–497PubMedCrossRefGoogle Scholar
  61. Mahmoudian S, Auerochs S, Gröne M, Marschall M (2009) Influenza A virus proteins PB1 and NS1 are subject to functionally important phosphorylation by protein kinase C. J Gen Virol 90:1392–1397PubMedCrossRefGoogle Scholar
  62. Martinez VP, Bellomo C, San Juan J, Pinna D, Forlenza R, Elder M, Padula PJ (2005) Person-to-person transmission of Andes virus. Emerg Infect Dis 11:1848–1853PubMedCrossRefGoogle Scholar
  63. Matrosovich M, Stech J, Klenk HD (2009) Influenza receptors, polymerase and host range. Rev Sci Tech 28:203–217PubMedGoogle Scholar
  64. Matsuoka Y, Chen SY, Compans RW (1994) A signal for Golgi retention in the bunyavirus G1 glycoprotein. J Biol Chem 269:22565–22573PubMedGoogle Scholar
  65. Mazur I, Anhlan D, Mitzner D, Wixler L, Schubert U, Ludwig S (2008) The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. Cell Microbiol 10:1140–1152PubMedCrossRefGoogle Scholar
  66. Medina RA, Mirowsky-Garcia K, Hutt J, Hjelle B (2007) Ribavirin, human convalescent plasma and anti-beta3 integrin antibody inhibit infection by Sin Nombre virus in the deer mouse model. J Gen Virol 88:493–505PubMedCrossRefGoogle Scholar
  67. Meyer BJ, Schmaljohn CS (2000) Persistent hantavirus infections: characteristics and mechanisms. Trends Microbiol 8:61–67PubMedCrossRefGoogle Scholar
  68. Meyer BJ, Southern PJ (1994) Sequence heterogenicity in the termini of lymphocytic choriomeningitis virus genomic and antigenomic RNAs. J Virol 68:7659–7664PubMedGoogle Scholar
  69. Min JY, Krug RM (2006) The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: inhibiting the 2′-5′ oligo (A) synthetase/RNase L pathway. Proc Natl Acad Sci U S A 103:7100–7105PubMedCrossRefGoogle Scholar
  70. Mir MA, Panganiban AT (2006) Characterization of the RNA chaperone activity of hantavirus nucleocapsid protein. J Virol 80:6276–6285PubMedCrossRefGoogle Scholar
  71. Mir MA, Panganiban AT (2008) A protein that replaces the entire cellular elF4F complex. EMBO J 27:3129–3139PubMedCrossRefGoogle Scholar
  72. Mir MA, Duran WA, Hjelle BL, Ye C, Panganiban AT (2008) Storage of cellular 5′ mRNA caps in P bodies for viral cap-snatching. Proc Natl Acad Sci USA 105:19294–19299PubMedCrossRefGoogle Scholar
  73. Mitzner D, Dudek SE, Studtrucker N, Anhlan D, Mazur I, Wissing J, Jänsch L, Wixler L, Bruns K, Sharma A, Wray V, Henklein P, Ludwig S, Schubert U (2009) Phosphorylation of the influenza A virus protein PB1-F2 by PKC is crucial for apoptosis promoting functions in monocytes. Cell Microbiol 11:1502–1516PubMedCrossRefGoogle Scholar
  74. Mou DL, Wang YP, Huang CX, Li GY, Pan L, Yang WS, Bai XF (2006) Cellular entry of Hantaan virus A9 strain: specific interactions with beta3 integrins and a novel 70 kDa protein. Biochem Biophys Res Commun 339:611–617PubMedCrossRefGoogle Scholar
  75. Mould JA, Paterson RG, Takeda M, Ohigashi Y, Venkataraman P, Lamb RA, Pinto LH (2003) Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. Dev Cell 5:175–184PubMedCrossRefGoogle Scholar
  76. Muramkami M, Towatari T, Ohuchi M, Shiota M, Akao M, Okumura Y, Parry MAA, Kido H (2001) Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad spectrum influenza A viruses and Sendai virus. Eur J Biochem 268:2847–2855CrossRefGoogle Scholar
  77. Naffakh N, Massin P, van der Werf S (2001) The transcription/replication activity of the polymerase of influenza A viruses is not correlated with the level of proteolysis induced by the PA subunit. Virology 285:244–252PubMedCrossRefGoogle Scholar
  78. Neumann G, Hughes MT, Kawaoka Y (2000) Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction hCRM1. EMBO J 19:7651–7658CrossRefGoogle Scholar
  79. Nichol ST, Spiropoulou CF, Morzunov S, Rollin PE, Ksiazek TG, Feldmann H, Sanchez A, Childs J, Zaki S, Peters CJ (1993) Genetic identification of a hantavirus associated with an outbreak of acute respiratory illness. Science 262:914–917PubMedCrossRefGoogle Scholar
  80. Nicholson KG, Wood JM, Zambon M (2003) Influenza. Lancet 362:1733–1745PubMedCrossRefGoogle Scholar
  81. Osterhaus AD, Rimmelzwaan GF, Martina BE, Bestebroer TM, Fouchier RA (2000) Influenza B virus in seals. Science 288:1051–1053PubMedCrossRefGoogle Scholar
  82. Ou R, Zhou S, Huang L, Moskophidis D (2001) Critical role for alpha/beta and gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J Virol 75:8407–84023PubMedCrossRefGoogle Scholar
  83. Oxford JS (2000) Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. Rev Med Virol 10:119–133PubMedCrossRefGoogle Scholar
  84. Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J, Marshall J, Simons JF, Egholm M, Paddock CD, Shieh WJ, Goldsmith CS, Zaki SR, Catton M, Lipkin WI (2008) A new arenavirus in a cluster of fatal transplant-associated diseases. N Engl J Med 358:991–998PubMedCrossRefGoogle Scholar
  85. Paragas J, Talon J, O’Neill RE, Anderson DK, García-Sastre A, Palese P (2001) Influenza B and C virus NEP (NS2) proteins possess nuclear export activities. J Virol 75:7375–7383PubMedCrossRefGoogle Scholar
  86. Peng G, Hongo S, Muraki Y, Sugawara K, Nishimura H, Kitame F, Nakamura K (1994) Genetic reassortment of influenza C viruses in man. J Gen Virol 75:3619–3622PubMedCrossRefGoogle Scholar
  87. Perez M, Craven RC, de la Torre JC (2003) The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci USA 100:12978–12983PubMedCrossRefGoogle Scholar
  88. Perez M, Greenwald DL, de la Torre JC (2004) Myristoylation of the RING finger Z protein is essential for arenavirus budding. J Virol 78:11443–11448PubMedCrossRefGoogle Scholar
  89. Perez DR, Donis RO (2001) Functional analysis of PA binding by influenza A virus PB1: effects on polymerase activity and viral infectivity. J Virol 75:8127–8136PubMedCrossRefGoogle Scholar
  90. Pinto LH, Lamb RA (2006) The M2-proton channels of influenza A and B viruses. J Biol Chem 281:8997–9000PubMedCrossRefGoogle Scholar
  91. Polyak SJ, Zheng S, Harnish DG (1995) 5′ termini of pichinde arenavirus S RNAs and mRNAs contain nontemplated nucleotides. J Virol 69:3211–3215PubMedGoogle Scholar
  92. Rambukkana A, Kunz S, Min J, Campbell KP, Oldstone MBA (2003) Targeting Schwann cells by nonlytic arenaviral infection selectively inhibits myelination. Proc Natl Acad Sci USA 100:16071–16076PubMedCrossRefGoogle Scholar
  93. Reid AH, Fanning TG, Hultin JV, Taubenberger JK (1999) Origin and evolution of the 1918 “Spanish” influenza virus hemagglutinin. Proc Natl Acad Sci USA 96:1651–1656PubMedCrossRefGoogle Scholar
  94. Seo SH, Hoffmann E, Webster RG (2002) Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med 8:950–954PubMedCrossRefGoogle Scholar
  95. Shi X, Kohl A, Leonard VH, Li P, McLees A, Elliott RM (2006) Requirement of the N-terminal region of orthobunyavirus nonstructural protein NSm for virus assembly and morphogenesis. J Virol 80:8089–8099PubMedCrossRefGoogle Scholar
  96. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440:435–436PubMedCrossRefGoogle Scholar
  97. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569PubMedCrossRefGoogle Scholar
  98. Smelt SC, Borrow P, Kunz S, Cao W, Tishon A, Lewicki H, Campbell KP, Oldstone MBA (2001) Differences in affinity of binding of lymphocytic choriomeningitis virus strains to the cellular receptor α-dystroglycan correlate with viral tropism and disease kinetics. J Virol 75:448–457PubMedCrossRefGoogle Scholar
  99. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125PubMedCrossRefGoogle Scholar
  100. Soldan SS, Plassmeyer ML, Matukonis MK, Gonzalez-Scarano F (2005) La Crosse virus nonstructural protein NSs counteracts the effects of short interfering RNA. J Virol 79:234–244PubMedCrossRefGoogle Scholar
  101. Spiropoulou CF, Morzunov S, Feldmann H, Sanchez A, Peters CJ, Nichol ST (1994) Genome structure and variability of a virus causing hantavirus pulmonary syndrome. Virology 200:715–723PubMedCrossRefGoogle Scholar
  102. Strecker T, Eichler R, Meulen J, Weissenhorn W, Klenk HD, Garten W, Lenz O (2003) Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles. J Virol 77:10700–10705PubMedCrossRefGoogle Scholar
  103. Subbarao K, Shaw MW (2000) Molecular aspects of avian influenza (H5N1) viruses isolated from humans. Rev Med Virol 10:337–348PubMedCrossRefGoogle Scholar
  104. Swanepoel R, Coetzer JAW (1994) Rift Valley fever. In: Coetzer JAW, Thomson GR, Tustin RC (eds) Infectious diseases of livestock with special reference to southern Africa. Oxford University Press, Oxford, pp 688–717Google Scholar
  105. Tong S, Li Y, Rivallier P, Canrady C, Castillo DA, Gen LM, Recuenco S, Ellison JA, Davis CT York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Powel A (2012) A distinct lineage of influenza A virus from bats. PNAS 109:4269–4274PubMedGoogle Scholar
  106. Urata S, Noda T, Kawaoka Y, Yokosawa H, Yasuda J (2006) Cellular factors required for Lassa virus budding. J Virol 80:4191–4195PubMedCrossRefGoogle Scholar
  107. Vieth S, Torda AE, Asper M, Schmitz H, Gunther S (2004) Sequence analysis of L RNA of Lassa virus. Virology 318:153–168PubMedCrossRefGoogle Scholar
  108. Weaver SC, Salas RA, de Manzione N, Fulhorst CF, Travasos da Rosa AP, Duno G, Utrera A, Mills JN, Ksiazek TG, Tovar D, Guzman H, Kang W, Tesh RB (2001) Extreme genetic diversity among Pirital virus (Arenaviridae) isolates from western Venezuela. Virology 285:110–118PubMedCrossRefGoogle Scholar
  109. Weber F, Dunn EF, Bridgen A, Elliott RM (2001) The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. Virology 281:67–74PubMedCrossRefGoogle Scholar
  110. Weber F, Bridgen A, Fazakerley JK, Streitenfeld H, Kessler N, Randall RE, Elliott RM (2002) Bunyamwera bunyavirus nonstructural protein NSs counteracts the induction of alpha/beta interferon. J Virol 76:7949–7955PubMedCrossRefGoogle Scholar
  111. Zhu X, Yu W, McBride R, Li Y, Chen LM, Donis RO, Tong S, Paulson YC, Wieson IA (2013) Hemagglutinin homologue from H17 W10 bat influenza virus exhibits divergent receptor binding and pH. Dependent fusion activities. PNAS 110:1458–1463Google Scholar
  112. Zinkernagel RM, Hengartner H (1992) Virally induced immunosuppression. Curr Opin Immunol 4:408–412PubMedCrossRefGoogle Scholar
  113. Zöller L, Faulda M, Meisl H, Ruh B, Kimmig P, Schelling U, Zeier M, Kulzer P, Becker C, Roggendorf M, Bautz EKF, Krüger DH, Darai G (1995) Seroprevalence of hantavirus antibodies in Germany as determined by a new recombinant enzyme immunoassay. Eur J Clin Microbiol 14:305–313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susanne Modrow
    • 1
    Email author
  • Dietrich Falke
    • 2
  • Uwe Truyen
    • 3
  • Hermann Schätzl
    • 4
  1. 1.Inst. Medizinische, Mikrobiologie und HygieneUniversität RegensburgRegensburgGermany
  2. 2.MainzGermany
  3. 3.Veterinärmedizinische Fak., Inst. Tierhygiene undUniversität LeipzigLeipzigGermany
  4. 4.Helmholtz Zentrum München, Institut für VirologieTU MünchenMünchenGermany

Personalised recommendations