Viruses with Single-Stranded, Non-Segmented, Negative-Sense RNA Genomes

  • Susanne ModrowEmail author
  • Dietrich Falke
  • Uwe Truyen
  • Hermann Schätzl
Reference work entry


Viruses with a continuous, single-stranded, negative-sense RNA genome are classified in the order Mononegavirales. They include the families Rhabdoviridae, Bornaviridae, Paramyxoviridae and Filoviridae.


Respiratory Syncytial Virus Newcastle Disease Virus Rabies Virus Measle Virus Vesicular Stomatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Albertini AA, Schoehn G, Weissenhorn W, Ruigrok RW (2008) Structural aspects of rabies virus replication. Cell Mol Life Sci 65:282–294PubMedCrossRefGoogle Scholar
  2. Allmang U, Hofer M, Herzog S, Bechter K, Staeheli P (2001) Low avidity of human serum antibodies for Borna disease virus antigens questions their diagnostic value. Mol Psychiatry 6:329–333PubMedCrossRefGoogle Scholar
  3. Appel MJG, Summers BA (1995) Pathogenicity of morbilliviruses for terrestrial carnivores. Vet Microbiol 44:187–191PubMedCrossRefGoogle Scholar
  4. Avota E, Avots A, Niewiesk S, Kane LP, Bommhardt U, ter Meulen V, Schneider-Schaulis S (2001) Disruption of Akt kinase activation is important for immuno-suppression induced by measles virus. Nat Med 7:725–731PubMedCrossRefGoogle Scholar
  5. Baer GM (1994) Rabies – an historical perspective. Infect Agents Dis 3:168–180PubMedGoogle Scholar
  6. Baize S, Leroy EM, Georges-Courbot M-C, Capron M, Lansoud-Soukate J, Debré P, Fisher-Hoch SP, McCormick JB, Georges AJ (1999) Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome in Ebola virus-infected patients. Nat Med 5:423–426PubMedCrossRefGoogle Scholar
  7. Bao X, Kolli D, Liu T, Shan Y, Garofalo RP, Casola A (2008) Human metapneumovirus small hydrophobic protein inhibits NF-kappaB transcriptional activity. J Virol 82:8224–8229PubMedCrossRefGoogle Scholar
  8. Barrett T (2005) Recombinant DNA technology for producing new rinderpest virus vaccines. Expert Rev Vaccines 4:113–120PubMedCrossRefGoogle Scholar
  9. Barrette RW, Metwally SA, Rowland JM, Xu L, Zaki SR, Nichol ST, Rollin PE, Towner JS, Shieh WJ, Batten B, Sealy TK, Carrillo C, Moran KE, Bracht AJ, Mayr GA, Sirios-Cruz M, Catbagan DP, Lautner EA, Ksiazek TG, White WR, McIntosh MT (2009) Discovery of swine as a host for the Reston ebolavirus. Science 325:204–206PubMedCrossRefGoogle Scholar
  10. Becker S, Spiess M, Klenk H-D (1995) The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J Gen Virol 76:393–399PubMedCrossRefGoogle Scholar
  11. Bode L, Zimmermann W, Ferszt P, Steinbach F, Ludwig H (1995) Borna disease virus genome transcribed and expresses in psychiatric patients. Nat Med 1:232–237PubMedCrossRefGoogle Scholar
  12. Bowden TA, Aricescu AR, Gilbert RJ, Grimes JM, Jones EY, Stuart DI (2008) Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol 15:567–572PubMedCrossRefGoogle Scholar
  13. Briese T, Schneemann A, Lewis A, Ludwig H, Lipkin WI (1994) Genomic organization of Borna disease virus. Proc Natl Acad Sci USA 91:4362–4366PubMedCrossRefGoogle Scholar
  14. Briss PA, Fehrs LJ et al (1994) Sustained transmission of mumps in a highly vaccinated population: assessment of primary vaccine failure and waning vaccine-induced immunity. J Infect Dis 169:77–82PubMedCrossRefGoogle Scholar
  15. Bronnert J, Wilde H, Tepsumethanon V, Lumlertdacha B, Hemachudha T (2007) Organ transplantations and rabies transmission. J Travel Med 14:177–180PubMedCrossRefGoogle Scholar
  16. Cárdenas WB, Loo YM, Gale M Jr, Hartman AL, Kimberlin CR, Martínez-Sobrido L, Saphire EO, Basler CF (2006) Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol 80:5168–5178PubMedCrossRefGoogle Scholar
  17. Chase G, Mayer D, Hildebrand A, Frank R, Hayashi Y, Tomonaga K, Schwemmle M (2007) Borna disease virus matrix protein is an integral component of the viral ribonucleoprotein complex that does not interfere with polymerase activity. J Virol 81:743–749PubMedCrossRefGoogle Scholar
  18. Chelbi-Alix MK, Vidy A, El Bougrini J, Blondel D (2006) Rabies viral mechanisms to escape the IFN system: the viral protein P interferes with IRF-3, Stat1, and PML nuclear bodies. J Interferon Cytokine Res 26:271–280PubMedCrossRefGoogle Scholar
  19. Clemente R, de la Torre JC (2007) Cell-to-cell spread of Borna disease virus proceeds in the absence of the virus primary receptor and furin-mediated processing of the virus surface glycoprotein. J Virol 81:5968–5977PubMedCrossRefGoogle Scholar
  20. Clemente R, de la Torre JC (2009) Cell entry of Borna disease virus follows a clathrin mediated endocytosis pathway that requires Rab5 and microtubules. J Virol 83:10406–10416PubMedCrossRefGoogle Scholar
  21. Clemente R, de Parseval A, Perez M, de la Torre JC (2009) Borna disease virus requires cholesterol in both cellular membrane and viral envelope for efficient cell entry. J Virol 83:2655–2662PubMedCrossRefGoogle Scholar
  22. Coil DA, Miller AD (2004) Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J Virol 78:10920–10926PubMedCrossRefGoogle Scholar
  23. Conzelmann KK, Cox JH, Schneider LG, Thiel HJ (1990) Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175:485–499PubMedCrossRefGoogle Scholar
  24. Cros JF, Palese P (2003) Trafficking of viral genomic RNA into and out of the nucleus: influenza, Thogoto and Borna disease viruses. Virus Res 95:3–12PubMedCrossRefGoogle Scholar
  25. Cubitt B, Ly C, de la Torre JC (2001) Identification and characterization of a new intron in Borna disease virus. J Gen Virol 82:641–646PubMedGoogle Scholar
  26. Cuesta J, Geng X, Asenjo A, Villanneva N (2000) Structural phosphoprotein M2-1 of the human respiratory syncytial virus is an RNA binding protein. J Virol 74:9858–9867PubMedCrossRefGoogle Scholar
  27. de la Torre JC (2002) Bornavirus and the brain. J Infect Dis 186:241–247CrossRefGoogle Scholar
  28. Deem SL, Spelman SH, Yates RA, Montali RJ (2000) Canine distemper in terrestrial carnivores: a review. J Zoo Wildl Med 31:441–451PubMedGoogle Scholar
  29. Deffrasnes C, Hamelin ME, Boivin G (2007) Human metapneumovirus. Semin Respir Crit Care Med 28:213–221PubMedCrossRefGoogle Scholar
  30. Dhiman N, Jacobson RM, Poland GA (2004) Measles virus receptors: SLAM and CD46. Rev Med Virol 14:217–229PubMedCrossRefGoogle Scholar
  31. Dietzschold B, Schnell M, Koprowski H (2005) Pathogenesis of rabies. Curr Top Microbiol Immunol 292:45–56PubMedCrossRefGoogle Scholar
  32. Durbin AP, McAuliffe JM, Collins PL, Murphy BR (1999) Mutations in the C, D, and V open reading frames of human parainfluenza virus type 3 attenuate replication in rodents and primates. Virology 261:319–330PubMedCrossRefGoogle Scholar
  33. Dürrwald R, Kolodziejek J, Herzog S, Nowotny N (2007) Meta-analysis of putative human bornavirus sequences fails to provide evidence implicating Borna disease virus in mental illness. Rev Med Virol 17:181–203PubMedCrossRefGoogle Scholar
  34. Elliott J, Lynch OT, Suessmuth Y, Qian P, Boyd CR, Burrows JF, Buick R, Stevenson NJ, Touzelet O, Gadina M, Power UF, Johnston JA (2007) Respiratory syncytial virus NS1 protein degrades STAT2 by using the elongin-cullin E3 ligase. J Virol 81:3428–3436PubMedCrossRefGoogle Scholar
  35. Erbar S, Diederich S, Maisner A (2008) Selective receptor expression restricts Nipah virus infection of endothelial cells. Virol J 5:142PubMedCrossRefGoogle Scholar
  36. Etessami R, Conzelmann KK, Fadai-Ghotbi B, Natelson B, Tsiang H, Ceccaldi PE (2000) Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol 81:2147–2153PubMedGoogle Scholar
  37. Faber M, Pulmanausahakul R, Nagao K, Prosniak M, Rice AB, Koprowski H, Schnell MJ, Dietzschold B (2004) Identification of viral genomic elements responsible for rabies virus neuroinvasiveness. Proc Natl Acad Sci USA 101:16328–16332PubMedCrossRefGoogle Scholar
  38. Falzarano D, Krokhin O, Van Domselaar G, Wolf K, Seebach J, Schnittler HJ, Feldmann H (2007) Ebola sGP–the first viral glycoprotein shown to be C-mannosylated. Virology 368:83–90PubMedCrossRefGoogle Scholar
  39. Finke S, Conzelmann KK (2005) Replication strategies of rabies virus. Virus Res 111:120–131PubMedCrossRefGoogle Scholar
  40. Fontana JM, Bankamp B, Rota PA (2008) Inhibition of interferon induction and signaling by paramyxoviruses. Immunol Rev 225:46–67PubMedCrossRefGoogle Scholar
  41. Graham SC, Assenberg R, Delmas O, Verma A, Gholami A, Talbi C, Owens RJ, Stuart DI, Grimes JM, Bourhy H (2008) Rhabdovirus matrix protein structures reveal a novel mode of self-association. PLoS Pathog 4:e1000251PubMedCrossRefGoogle Scholar
  42. Groseth A, Feldmann H, Strong JE (2007) The ecology of Ebola virus. Trends Microbiol 15:408–416PubMedCrossRefGoogle Scholar
  43. Gupta M, Mahanty S, Bray M, Ahmed R, Rollin PE (2001) Passive transfer of antibodies protects immunocompetent and immunodeficient mice against lethal Ebola virus infection without complete inhibition of viral replication. J Virol 75:4649–4654PubMedCrossRefGoogle Scholar
  44. Hartman AL, Bird BH, Towner JS, Antoniadou ZA, Zaki SR, Nichol ST (2008) Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of Ebola virus. J Virol 82:2699–2704PubMedCrossRefGoogle Scholar
  45. Hayashi Y, Horie M, Daito T, Honda T, Ikuta K, Tomonaga K (2009) Heat shock cognate protein 70 controls Borna disease virus replication via interaction with the viral non-structural protein X. Microbes Infect 11:394–402PubMedCrossRefGoogle Scholar
  46. Hoenen T, Volchkov V, Kolesnikova L, Mittler E, Timmins J, Ottmann M, Reynard O, Becker S, Weissenhorn W (2005) VP40 octamers are essential for Ebola virus replication. J Virol 79:1898–1905PubMedCrossRefGoogle Scholar
  47. Hoenen T, Groseth A, Falzarano D, Feldmann H (2006a) Ebola virus: unravelling pathogenesis to combat a deadly disease. Trends Mol Med 12:206–215PubMedCrossRefGoogle Scholar
  48. Hoenen T, Groseth A, Kolesnikova L, Theriault S, Ebihara H, Hartlieb B, Bamberg S, Feldmann H, Ströher U, Becker S (2006b) Infection of naive target cells with virus-like particles: implications for the function of Ebola virus VP24. J Virol 14:7260–7264CrossRefGoogle Scholar
  49. Hoffmann MA, Banerjee AK (2000) Analysis of RNA secondary structure in replication of human parainfluenza virus type 3. Virology 272:151–158CrossRefGoogle Scholar
  50. Honkavuori KS, Shivaprasad HL, Williams BL, Quan PL, Hornig M, Street C, Palacios G, Hutchison SK, Franca M, Egholm M, Briese T, Lipkin WI (2008) Novel Borna virus in psittacine birds with proventricular dilatation disease. Emerg Infect Dis 14:1883–1886PubMedCrossRefGoogle Scholar
  51. Hooper P (2000) New fruit bat viruses affecting horses, pigs and humans. In: Brown C, Bolin C (eds) Emerging diseases of animals. ASM Press, Washington, DC, pp 85–99Google Scholar
  52. Hviid A, Rubin S, Mühlemann K (2008) Mumps. Lancet 371:932–944PubMedCrossRefGoogle Scholar
  53. Ito N, Takayama M, Yamada K, Sugiyama M, Minamoto N (2001) Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. J Virol 75:9121–9128PubMedCrossRefGoogle Scholar
  54. Jackson AC (2000) Rabies. Can J Neurol Sci 27:278–282PubMedGoogle Scholar
  55. Kahn JS (2006) Epidemiology of human metapneumovirus. Clin Microbiol Rev 19:546–557PubMedCrossRefGoogle Scholar
  56. Kaletsky RL, Simmons G, Bates P (2007) Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol 81:13378–13384PubMedCrossRefGoogle Scholar
  57. Kraus I, Bogner E, Lilie H, Eickmann M, Garten W (2005) Oligomerization and assembly of the matrix protein of Borna disease virus. FEBS Lett 579:2686–2692PubMedCrossRefGoogle Scholar
  58. Kubota T, Matsuoka M, Chang TH, Bray M, Jones S, Tashiro M, Kato A, Ozato K (2009) Ebolavirus VP35 interacts with the cytoplasmic dynein light chain 8. J Virol 83:6952–6956PubMedCrossRefGoogle Scholar
  59. Lafon M (2008) Immune evasion, a critical strategy for rabies virus. Dev Biol (Basel) 131:413–419Google Scholar
  60. Lafon J, Lafage M, Martinez-Anrends A, Ramirez R, Vuillier F, Charron D, Lotteau V, Scott-Algara D (1992) Evidence of a viral superantigen in humans. Nature 358:507–509PubMedCrossRefGoogle Scholar
  61. Lafon M, Scott-Algara D, Marche PN, Cazenave PA, Jouvin-Marche E (1994) Neonatal deletion and selective expansion of mouse T cells by exposure to rabies virus nucleocapsid superantigen. J Exp Med 180:1207–1215PubMedCrossRefGoogle Scholar
  62. Lamb RA, Jardetzky TS (2007) Structural basis of viral invasion: lessons from paramyxovirus F. Curr Opin Struct Biol 17:427–436PubMedCrossRefGoogle Scholar
  63. Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–182PubMedCrossRefGoogle Scholar
  64. Leung AK, Kellner JD, Davies HD (2005) Respiratory syncytial virus bronchiolitis. J Natl Med Assoc 97:1708–1713PubMedGoogle Scholar
  65. Leung DW, Ginder ND, Fulton DB, Nix J, Basler CF, Honzatko RB, Amarasinghe GK (2009) Structure of the Ebola VP35 interferon inhibitory domain. Proc Natl Acad Sci USA 106:411–416PubMedCrossRefGoogle Scholar
  66. Lewis P, Fu Y, Lentz TL (1998) Rabies virus entry into endosomes on IMR-32 human neuroblastoma cells. Exp Neurol 153:65–73PubMedCrossRefGoogle Scholar
  67. Lewis P, Fu Y, Lentz TL (2000) Rabies virus entry at the neuromuscular junction in nerve-muscle cocultures. Muscle Nerve 23:720–730PubMedCrossRefGoogle Scholar
  68. Li D, Jans DA, Bardin PG, Meanger J, Mills J, Ghildyal R (2008) Association of respiratory syncytial virus M protein with viral nucleocapsids is mediated by the M2-1 protein. J Virol 82:8863–8870PubMedCrossRefGoogle Scholar
  69. Li M, Schmitt PT, Li Z, McCrory TS, He B, Schmitt AP (2009) Mumps virus matrix, fusion, and nucleocapsid proteins cooperate for efficient production of virus-like particles. J Virol 83:7261–7272PubMedCrossRefGoogle Scholar
  70. Lichty BD, Power AT, Stojdl DF, Bell JC (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10:210–216PubMedCrossRefGoogle Scholar
  71. Lin GY, Lamb RA (2000) The paramyxovirus simian virus 5 V protein slows progression of the cell cycle. J Virol 74:9152–9166PubMedCrossRefGoogle Scholar
  72. Ling Z, Tran KC, Teng MN (2009) Human respiratory syncytial virus nonstructural protein NS2 antagonizes the activation of beta interferon transcription by interacting with RIG-I. J Virol 83:3734–3742PubMedCrossRefGoogle Scholar
  73. Manchester M, Eto DE, Valsamakis A, Liton PB, Fernandez-Munoz R, Rota PA, Bellini WJ, Forthal DN, Oldstone MBA (2000) Clinical isolates of measles virus use CD46 as a cellular receptor. J Virol 74:3967–3974PubMedCrossRefGoogle Scholar
  74. Martini GA, Siegert R (eds) (1971) Marburg virus disease. Springer, BerlinGoogle Scholar
  75. Mohamadzadeh M, Chen L, Schmaljohn AL (2007) How Ebola and Marburg viruses battle the immune system. Nat Rev Immunol 7:556–567PubMedCrossRefGoogle Scholar
  76. Moll M, Klenk H-D, Herrler G, Maisner A (2001) A single amino acid change in the cytoplasmic domains of measles virus glycoproteins H and F alters targeting, endocytosis, and cell fusion in polarized Madin-Darby canine kidney cells. J Biol Chem 276:17887–17894PubMedCrossRefGoogle Scholar
  77. Morimoto K, Shoji Y, Inoue S (2005) Characterization of P gene-deficient rabies virus: propagation, pathogenicity and antigenicity. Virus Res 111:61–67PubMedCrossRefGoogle Scholar
  78. Muscat M, Bang H, Wohlfahrt J, Glismann S, Mølbak K (2009) Measles in Europe: an epidemiological assessment. Lancet 373:383–389PubMedCrossRefGoogle Scholar
  79. Nadin-Davis SA, Fehlner-Gardiner C (2008) Lyssaviruses: current trends. Adv Virus Res 71:207–250PubMedCrossRefGoogle Scholar
  80. Nel LH, Markotter W (2007) Lyssaviruses. Crit Rev Microbiol 33:301–324PubMedCrossRefGoogle Scholar
  81. Nokes JD, Cane PA (2008) New strategies for control of respiratory syncytial virus infection. Curr Opin Infect Dis 21:639–643PubMedCrossRefGoogle Scholar
  82. Ogino T, Banerjee AK (2007) Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus. Mol Cell 25:85–97PubMedCrossRefGoogle Scholar
  83. Ohtaki N, Kamitani W, Watanabe Y, Hayashi Y, Yanai H, Ikuta K, Tomonaga K (2007) Downregulation of an astrocyte-derived inflammatory protein, S100B, reduces vascular inflammatory responses in brains persistently infected with Borna disease virus. J Virol 81:5940–5948PubMedCrossRefGoogle Scholar
  84. Patterson JB, Thomas D, Lewick H, Billeter MA, Oldstone MBA (2000) V and C proteins of measles virus function as virulence factors in vivo. Virology 267:80–89PubMedCrossRefGoogle Scholar
  85. Peng G, Yan Y, Zhu C, Wang S, Yan X, Lu L, Li W, Hu J, Wei W, Mu Y, Chen Y, Feng Y, Gong R, Wu K, Zhang F, Zhang X, Zhu Y, Wu J (2008) Borna disease virus P protein affects neural transmission through interactions with gamma-aminobutyric acid receptor-associated protein. J Virol 82:12487–12497PubMedCrossRefGoogle Scholar
  86. Perez M, Watanabe M, Whitt MA, de la Torre JC (2001) N-terminal domain of Borna disease virus G (p56)-protein is sufficient for virus receptor recognition and cell entry. J Virol 75:7078–7085PubMedCrossRefGoogle Scholar
  87. Poenisch M, Unterstab G, Wolff T, Staeheli P, Schneider U (2004) The X protein of Borna disease virus regulates viral polymerase activity through interaction with the P protein. J Gen Virol 85:1895–1898PubMedCrossRefGoogle Scholar
  88. Poenisch M, Burger N, Staeheli P, Bauer G, Schneider U (2009) Protein X of Borna disease virus inhibits apoptosis and promotes viral persistence in the CNS of newborn-infected rats. J Virol 83:4297–4307PubMedCrossRefGoogle Scholar
  89. Reynard O, Borowiak M, Volchkova VA, Delpeut S, Mateo M, Volchkov VE (2009) Ebola virus glycoprotein GP masks both its own epitopes and the presence of cellular surface proteins. J Virol 83:9596–9601PubMedCrossRefGoogle Scholar
  90. Rima BK, Duprex WP (2006) Morbilliviruses and human disease. J Pathol 208:199–214PubMedCrossRefGoogle Scholar
  91. Rinder M, Ackermann A, Kempf H, Kaspers B, Korbel R, Staeheli P (2009) Broad tissue and cell tropism of avian bornavirus in parrots with proventricular dilatation disease. J Virol 83:5401–5407PubMedCrossRefGoogle Scholar
  92. Rose JK, Schubert M (1987) Rhabdovirus genomes and their products. In: Wagner RR (ed) The rhabdoviruses. Plenum, New York, pp 129–166CrossRefGoogle Scholar
  93. Rossiter B (1994) Rinderpest. In: Coetzer JAW, Thomson GR, Tustin RC (eds) Infectious diseases of livestock with special reference to southern Africa. Oxford University Press, Oxford, pp 735–757Google Scholar
  94. Rupprecht CE, Dietzschold B, Koprowski H (eds) Lyssaviruses. Curr Top Microbiol Immunol 187:1–352Google Scholar
  95. Russell CJ, Luque LE (2006) The structural basis of paramyxovirus invasion. Trends Microbiol 14:243–246PubMedCrossRefGoogle Scholar
  96. Schneider U, Martin A, Schwemmle M, Staeheli P (2007) Genome trimming by Borna disease viruses: viral replication control or escape from cellular surveillance? Cell Mol Life Sci 64:1038–1042PubMedCrossRefGoogle Scholar
  97. Schneider-Schaulies S, Schneider-Schaulies J (2009) Measles virus-induced immunosuppression. Curr Top Microbiol Immunol 330:243–269PubMedCrossRefGoogle Scholar
  98. Staeheli P, Stauder C, Hausmann J, Ehrensperger F, Schwemmle M (2000) Epidemiology of Borna disease virus. J Gen Virol 81:2123–2135PubMedGoogle Scholar
  99. Suzuki T, Portner A, Scroggs RA, Uchikawa M, Koyama N, Matsuo K, Suzuki Y, Takimoto T (2001) Receptor specificities of human respiroviruses. J Virol 75:4604–4613PubMedCrossRefGoogle Scholar
  100. Swanepoel R (1995) Rabies. In: Coetzer JAW, Thomson GR, Tustin RC (eds) Infectious diseases of livestock with special reference to southern Africa. Oxford University Press, Oxford, pp 493–552Google Scholar
  101. Tatsuo H, Ono N, Yanagi Y (2001) Morbilliviruses use signalling lymphocyte activation molecules (CD150) as cellular receptors. J Virol 75:5842–5850PubMedCrossRefGoogle Scholar
  102. Tebbey PW, Hagen M, Hancock GE (1998) Atypical pulmonary eosinophilia is mediated by a specific amino acid sequence of the attachment (G) protein of respiratory syncytial virus. J Exp Med 188:1967–1972PubMedCrossRefGoogle Scholar
  103. Theerasurakarn S, Ubol S (1998) Apoptosis induction in brain during the fixed strain of rabies virus infection correlates with the onset and severity of illness. J Neurovirol 4:407–414PubMedCrossRefGoogle Scholar
  104. Thoulouze MI, Lafage M, Schachner M, Hartmann U, Cremer H, Lafon M (1998) The neural cell adhesion molecule is a receptor for rabies virus. J Virol 72:7181–7190PubMedGoogle Scholar
  105. Tuffereau C, Schmidt K, Langevin C, Lafay F, Dechant G, Koltzenburg M (2007) The rabies virus glycoprotein receptor p75NTR is not essential for rabies virus infection. J Virol 81:13622–13630PubMedCrossRefGoogle Scholar
  106. Ubol S, Sukwattanapan C, Maneerat Y (2001) Inducible nitric oxide synthase inhibition delays death of rabies virus-infected mice. J Med Microbiol 50:238–242PubMedGoogle Scholar
  107. van den Hoogen BG, de Jong JC, Kuiken T, de Groot R, Fouchier RA, Osterhaus AD (2001) A newly discovered human pneumovirus isolated from young children with respiratory tract disease. Nat Med 71:719–724CrossRefGoogle Scholar
  108. Volchkov VE, Volchkova VA, Mühlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk H-D (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291:1965–1969PubMedCrossRefGoogle Scholar
  109. Wahl-Jensen VM, Afanasieva TA, Seebach J, Ströher U, Feldmann H, Schnittler HJ (2005) Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol 79:10442–10450PubMedCrossRefGoogle Scholar
  110. Walker MP, Jordan I, Briese T, Fischer N, Lipkin WI (2000) Expression and characterization of the Borna disease virus polymerase. J Virol 74:4425–4428PubMedCrossRefGoogle Scholar
  111. Warris A, de Groot R (2006) Human metapneumovirus: an important cause of acute respiratory illness. Adv Exp Med Biol 582:251–264PubMedCrossRefGoogle Scholar
  112. Weingartl HM, Berhane Y, Czub M (2008) Animal models of henipavirus infection: a review. Vet J 181:211–220PubMedCrossRefGoogle Scholar
  113. Wild TF (2009) Henipaviruses: a new family of emerging paramyxoviruses. Pathol Biol (Paris) 57:188–196CrossRefGoogle Scholar
  114. Willoughby RE Jr, Tieves KS, Hoffman GM, Ghanayem NS, Amlie-Lefond CM, Schwabe MJ, Chusid MJ, Rupprecht CE (2005) Survival after treatment of rabies with induction of coma. N Engl J Med 352:2508–2514PubMedCrossRefGoogle Scholar
  115. Wolff T, Pfleger R, Wehner T, Reinhardt J, Richt J (2000) A short leucine-rich sequence in the Borna disease virus p10 proteins mediates association with the viral phospho- and nucleoproteins. J Gen Virol 81:939–947PubMedGoogle Scholar
  116. Xu K, Rajashankar KR, Chan YP, Himanen JP, Broder CC, Nikolov DB (2008) Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci USA 105:9953–9958PubMedCrossRefGoogle Scholar
  117. Yanagi Y (2001) The cellular receptor for measles virus – elusive no more. Rev Med Virol 11:149–156PubMedCrossRefGoogle Scholar
  118. Yanagi Y, Takeda M, Ohno S (2006) Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 87:2767–2779PubMedCrossRefGoogle Scholar
  119. Yang Z-Y, Duckers HJ, Sullivan NJ, Sanchez A, Nabel EG, Nabel GJ (2000) Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med 6:886–889PubMedCrossRefGoogle Scholar
  120. Young DF, Didcook L, Goodbourn S, Randall RE (2000) Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology 269:383–390PubMedCrossRefGoogle Scholar
  121. Zampieri CA, Sullivan NJ, Nabel GJ (2007) Immunopathology of highly virulent pathogens: insights from Ebola virus. Nat Immunol 8:1159–1164PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Susanne Modrow
    • 1
    Email author
  • Dietrich Falke
    • 2
  • Uwe Truyen
    • 3
  • Hermann Schätzl
    • 4
  1. 1.Inst. Medizinische, Mikrobiologie und HygieneUniversität RegensburgRegensburgGermany
  2. 2.MainzGermany
  3. 3.Veterinärmedizinische Fak., Inst. Tierhygiene undUniversität LeipzigLeipzigGermany
  4. 4.Helmholtz Zentrum München, Institut für VirologieTU MünchenMünchenGermany

Personalised recommendations