CIRP Encyclopedia of Production Engineering

2014 Edition
| Editors: The International Academy for Production Engineering, Luc Laperrière, Gunther Reinhart

Coordinate Measuring Machine

Reference work entry
DOI: https://doi.org/10.1007/978-3-642-20617-7_6579

Definition

A coordinate measuring machine (CMM) is a device measuring spatial points on the surface of a workpiece (see ISO10360–1) (ISO 10360 2003–2011). This device can move the equipped probing system in the defined measuring volume for probing the measuring points. Probing systems acquire single points or series of points by scanning (Dutschke and Keferstein 2007; Pfeifer 2002; Schwenke et al. 2002; Weckenmann 2011; Weckenmann et al. 2004).

Theory and Application

Introduction

Coordinate measuring machines (CMMs) were developed in the mid-1960s based on jig boring machines. They are designed to measure size, form, and position deviations of workpiece features within a short period of time and with a low measuring uncertainty (Christoph and Neumann 2004; DIN 1319 1995–2005; Dutschke and Keferstein 2007; ISO 1101 2004; JCGM 100:2008 2008; Pfeifer 2002; Savio et al. 2007; Weckenmann 2011; Wilhelm et al. 2001). Therefore, the structure of CMMs consists of mechanical machine assemblies,...

This is a preview of subscription content, log in to check access

References

  1. Christoph R, Neumann HJ (2004) Multisensor Coordinate Metrology: Measurement of Form, Size and Location in Production and Quality Control. Verlag Moderne Industrie, Landsberg, GermanyGoogle Scholar
  2. de Campos Porath M (2009) Metrologische Qualifizierung von Koordinatenmessgeräten für mikromechanische Bauteile, Dissertation - Phd.-Thesis, RWTH Aachen UniversityGoogle Scholar
  3. DIN 1319 (1995–2005) Grundlagen der Messtechnik [Fundamentals of metrology]. Beuth, Berlin (in German)Google Scholar
  4. Dutschke W, Keferstein CP (2007) Fertigungsmesstechnik: praxisorientierte Grundlagen, moderne Messverfahren [Metrology in production: fundamentals for practitioner, modern measurement methods], 6th edn. Teubner, Wiesbaden (in German)Google Scholar
  5. ISO 1101 (2004) Geometrical product specifications (GPS): geometrical tolerancing: tolerances of form, orientation, location and run-out. Deutsches Institut für Normung e. V., BerlinGoogle Scholar
  6. ISO 10360 (2003–2011) Geometrical product specifications (GPS): acceptance and reverification tests for coordinate measuring machines (CMM). Deutsches Institut für Normung e. V., BerlinGoogle Scholar
  7. JCGM 100:2008 (2008) Evaluation of measurement data: guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
  8. Pfeifer T (2002) Production metrology. Oldenbourg Wissenschaftsverlag, MünchenCrossRefGoogle Scholar
  9. Savio E, De Chiffre L, Schmitt R (2007) Metrology of freeform shaped parts. CIRP Ann Manuf Technol 56(2):810–835CrossRefGoogle Scholar
  10. Schwenke H, Neuschaefer-Rube U, Pfeifer T, Kunzmann H (2002) Optical methods for dimensional metrology in production engineering. CIRP Ann Manuf Technol 51(2):685–699CrossRefGoogle Scholar
  11. Weckenmann A (2011) Koordinatenmesstechnik: Flexible Strategien für funktions- und fertigungsgerechtes Prüfen: Flexible Messstrategien für Maß, Form und Lage, 2nd edn., Carl Hanser Verlag, München, GermanyGoogle Scholar
  12. Weckenmann A, Estler T, Peggs G, McMurtry D (2004) Probing systems in dimensional metrology. CIRP Ann Manuf Technol 53(2):657–684CrossRefGoogle Scholar
  13. Wilhelm RG, Hocken R, Schwenke H (2001) Task specific uncertainty in coordinate measurement. CIRP Ann Manuf Technol 50(2):553–563CrossRefGoogle Scholar

Copyright information

© CIRP 2014

Authors and Affiliations

  1. 1.Bremen Institute of Metrology, Automation and Quality ScienceUniversitiy of BremenBremenGermany