CIRP Encyclopedia of Production Engineering

2014 Edition
| Editors: The International Academy for Production Engineering, Luc Laperrière, Gunther Reinhart


  • Welf-Guntram Drossel
Reference work entry



Unconventional Actuator Systems

“An actuator is a functional element which connects the information processing part of an electronic control system in a technical of nontechnical process. Actuators can be used to control the flow of energy, mass or volume. The output quantity of an actuator is energy or power, often in the form of a mechanical working potential (force times displacement). The actuator control is always achieved using very low electrical power, ideally without any power consumption” (Janocha 2004).

Actuators can be classified as conventional and unconventional actuators. Conventional actuators are commonly used as essential components for mechatronic systems (see Fig. 1 (left)). These are, for instance, electrical motors, pneumatic actuators, hydraulic pistons, or relays.
This is a preview of subscription content, log in to check access.


  1. Brecher C, Schauerte G, Lange S (2005) Adaptronisches bohrwerkzeug zur feinbearbeitung von zylinderhülsen [Adaptronical drilling tool for precision machining of cylinder liner]. Inno, Innovative Technik--Neue Anwendungen 32(10):14–15, Jg. 12/2005Google Scholar
  2. Bushuev VV (1991) Compensation of Elastic Deformations in Machine Tools, Stank I instrument, No. 3:42–46 (in Russian).Google Scholar
  3. Denkena B, Will JC, Sellmeier V (2006) Prediction of process stability and dynamic forces of an adaptronic spindle system, Conf.-Speech, Adaptronic Congress 2006, May 3–4, 2006, Göttingen, pp. 9.1–9.7Google Scholar
  4. Holz B, Janocha H (2010) MSM Actuators – magnetic circuit concepts and operating modes; 12th international conference on new actuators 2010, Bremen, June 14–16, 2010 Germany: 307–310Google Scholar
  5. Janocha H (2004) Actuator – basics and applications. Springer, BerlinGoogle Scholar
  6. Katsuki A, Onikura H, Sajima T, Akashi T, Matsuo T (1992) Development of a deep hole boring tool guided by laser. CIRP Ann Manuf Technol 41(1):83–87CrossRefGoogle Scholar
  7. Koren Y, Pasek ZJ, Szuba P (1999) Design of a precision, agile line boring station. CIRP Ann Manuf Technol 48(1):313–316CrossRefGoogle Scholar
  8. Neugebauer R, Denkena B, Wegener K (2007) Mechatronic systems for machine tools. CIRP Ann Manuf Technol 56(2):657–686CrossRefGoogle Scholar
  9. Neugebauer R, Drossel W-G, Bucht A, Kranz B, Pagel K (2010a) Control design and experimental validation of an adaptive spindle support for enhanced cutting processes. CIRP Ann Manuf Technol 59(1):373–376CrossRefGoogle Scholar
  10. Neugebauer R, Pagel K, Bucht A, Wittstock V, Pappe A (2010b) Control concept for piezo-based actuator-sensor-units for uniaxial vibration damping in machine tools. Prod Eng 4(4):413–419CrossRefGoogle Scholar
  11. Neugebauer R, Drossel W-G, Pagel K, Bucht A, Anders N (2011) Design of a controllable shape- memory- actuator with mechanical lock function. In: Ghasemi-Nejhad MN (ed); Active and passive smart structures and integrated systems V : 6–10. März 2011. – San Diego Bellingham, WA : SPIE, 2011 (Proceedings of SPIE 7977, 797719)Google Scholar
  12. Preumont A (1997) Vibration control of active structures: an introduction. Kluwer Academic Publishers, AmsterdamMATHCrossRefGoogle Scholar
  13. Tellinin J, Suorsa I, Jääskeläinen A, Aaltio I, Ullakko K (2002) Basic properties Of magnetic shape memory actuators; In: Proceedings of ACTUATOR 2002, 8th international conference on new actuators 2002, Bremen, Germany: 566–569Google Scholar
  14. Yang G (2001) Large-scale magnetorheological fluid damper for vibration mitigation: modeling, testing and control. Ph.D. Dissertation. University of Notre Dame, Notre Dame, IN, 2001Google Scholar

Copyright information

© CIRP 2014

Authors and Affiliations

  1. 1.Fraunhofer Institute for Machine Tools and Forming Technology IWUChemnitzGermany