Skip to main content

Oxidoreductase Inhibitors

  • Reference work entry
Drug Design
  • 5506 Accesses

Abstract

Chemical reactions that occur via the exchange of electrons are termed redox reactions. Normally the carbon atom changes its oxidation state in biochemical redox processes. As a general rule, derivatives with a significant number of directly bound hydrogen atoms are transformed into derivatives with a larger number of contacts to nitrogen, oxygen, and sulfur in oxidations. Because these bonds to the above-mentioned electronegative elements are usually associated with the introduction of polar functional groups, redox reactions exert a decisive influence on the physicochemical properties of the oxidized substances. For example, the water solubility is increased. This is of great importance for the elimination of xenobiotics. Cytochrome P450 enzymes, a large group of oxidizing enzymes, are involved in the corresponding metabolic transformations. On the other hand, reductions are of crucial importance for the organism too. In these reaction steps, reactive aldehydes or ketones are transformed into alcohols, which subsequently are more easily conjugated and eliminated (Sect. 8.1). Transition metals, which can adopt a variety of oxidation states, are predestined to serve as electron donors and acceptors in redox reactions. In biological systems, one transition metal, iron, is often used for this task. Once incorporated in a protoporphyrin ring scaffold, it exists in penta- or hexavalent coordination state and can take on oxidation states between +2 and +4. Moreover, it participates in complexes with sulfur. There it forms interesting multinuclear structures: the so-called iron–sulfur cluster. In addition to iron, copper also plays a role as a mediator of biochemical redox processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

General Literature

  • Chan DCN, Anderson AC. Towards species-specific antifolates. Curr Med Chem. 2006;13:377–98.

    Article  PubMed  CAS  Google Scholar 

  • Endo A. A historical perspective on the discovery of statins. Proc Jpn Acad Ser B. 2010;86:484–93.

    Article  CAS  Google Scholar 

  • Flower RJ. The development of COX-2 inhibitors. Nat Rev Drug Discov. 2003;2:179–91.

    Article  PubMed  CAS  Google Scholar 

  • Gangjee A, Jain HD. Antifolates – past, present and future. Curr Med Chem Anti-Cancer Agents. 2004;4:405–10.

    Article  CAS  Google Scholar 

  • Hoffmann F, Maser E. Carbonyl reductases and pluripotent hydroxysteroid dehydrogenases of the short-chain dehydrogenase/reductase superfamily. Drug Metab Rev. 2007;39:87–144.

    Article  PubMed  CAS  Google Scholar 

  • Lamb DC, Waterman MR, Kelly SL, Guengerich FP. Cytochromes P450 and drug discovery. Curr Opin Biotechnol. 2007;18:504–12.

    Article  PubMed  CAS  Google Scholar 

  • Michaux C, Charlier C. Structural approaches for COX-2 inhibition. Mini Rev Med Chem. 2004;4:603–15.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JA, Warner TD. COX isoforms in the cardiovascular system: understanding the activities of non-steroidal anti-inflammatory drugs. Nat Rev Drug Discov. 2006;5:75–86.

    Article  PubMed  CAS  Google Scholar 

  • Oates P. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets. 2008;9:14–36.

    Article  PubMed  CAS  Google Scholar 

  • Tobert JA. Lovastatin and beyond: the history of HMG-CoA reductase inhibitors. Nat Rev Drug Discov. 2003;2:517–26.

    Article  PubMed  CAS  Google Scholar 

  • Vagelos PR. Are prescription drug prices high? Science. 1991;252:1080–4.

    Article  PubMed  CAS  Google Scholar 

  • Webster SP, Pallin TD. 11β-Hydroxysteroid dehydrogenase type 1 inhibitors as therapeutic agents. Expert Opin Ther Patents. 2007;17:1407–22.

    Article  CAS  Google Scholar 

  • Weinshilboum R, Wang L. Pharmacogenomics: bench to bedside. Nat Rev Drug Discov. 2004;3:739–48.

    Article  PubMed  CAS  Google Scholar 

  • Wienkers LC, Heath TG. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov. 2005;4:825–33.

    Article  PubMed  CAS  Google Scholar 

  • Xia W, Low PS. Folate-targeted therapies for cancer. J Med Chem. 2010;53:6811–24.

    Article  PubMed  CAS  Google Scholar 

  • Youdim MBH, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci. 2006;7:295–309.

    Article  PubMed  CAS  Google Scholar 

Special Literature

  • Bertilsson L, Lou YQ, et al. Pronounced differences between native Chinese and Swedish populations in the polymorphic hydroxylations of Debrisoquin and S-Mephenytoin. Clin Pharmacol Ther. 1992;51:388–97.

    Article  PubMed  CAS  Google Scholar 

  • Cody V, Pace J, Chisum K, Rosowsky A. New insights into DHFR interactions: analysis of Pneumocystis carinii and mouse DHFR complexes with NADPH and two highly potent 5-(ω-Carboxy(alkyloxy) trimethoprim derivatives reveals conformational correlations with activity and novel parallel ring stacking interactions. Proteins. 2006;65:959–69.

    Article  PubMed  CAS  Google Scholar 

  • Daly AK. Pharmacogenetics of the cytochromes P450. Curr Top Med Chem. 2004;4:1733–44.

    Article  PubMed  CAS  Google Scholar 

  • De Colibus L, Li M, et al. Three-dimensional structure of human monoamine oxidase (MAO A): relation to the Structure of rat MAO A and human MAO B. PNAS. 2005;102:12684–9.

    Article  PubMed  Google Scholar 

  • Ekroos M, Sjögren T. Structural basis for ligand promiscuity in cytochrome P450 3A4. PNAS. 2006;103:13682–7.

    Article  PubMed  CAS  Google Scholar 

  • FitzGerald GA. COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat Rev Drug Discov. 2003;2:879–90.

    Article  PubMed  CAS  Google Scholar 

  • Istvan ES, Palnitkar M, Buchanan SK, Deisenhofer J. Crystal structure of the catalytic ortion of human HMGCoA reductase: insights into regulation of activity and catalysis. EMBO J. 2000;19:819–30.

    Article  PubMed  CAS  Google Scholar 

  • Rosowsky A, Forsch RA, Wright JE. Synthesis and in vivo antifolate activity of rotationally restricted aminopterin and methotrexate analogues. J Med Chem. 2004;47:6958–63.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Klebe, G. (2013). Oxidoreductase Inhibitors. In: Klebe, G. (eds) Drug Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17907-5_27

Download citation

Publish with us

Policies and ethics