Skip to main content

Glycosphingolipids

  • Reference work entry
Encyclopedia of Biophysics

Introduction

S. J. Singer and G. L. Nicolson introduced the fluid mosaic model for the structure of cell membranes in 1972 that suggested the aggregation of some proteins in lipid bilayers (Singer and Nicolson 1972). As a theoretical consequence of this working hypothesis, components of biological membranes distribute laterally resulting in the creation of morphologically distinct domains with a heterogeneous molecular composition and supramolecular organization. Although the existence of such domains in cellular membranes is still controversially discussed, most authors now accept the concept that membrane domains with physicochemical properties that differ from the surrounding membrane environment exist (Lingwood and Simons 2010; Simons and Gerl 2010). This review will focus on certain aspects of glycosphingolipids (GSLs) that participate as driving forces in the formation of membrane microdomains and exert specific functions related to their physicochemical characteristics through...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bindila L, Peter-Katalinić J. Chip-mass spectrometry for glycomic studies. Mass Spectrom Rev. 2009;28:223–53.

    CAS  PubMed  Google Scholar 

  • Geyer H, Geyer R. Strategies for glycoconjugate analysis. Acta Anat. 1998;161:18–35.

    CAS  PubMed  Google Scholar 

  • Gupta G, Surolia A. Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett. 2010;584:1634–41.

    CAS  PubMed  Google Scholar 

  • Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. Mass Spectrom Rev. 2011;30:1–100.

    PubMed  Google Scholar 

  • Lahiri S, Futerman AH. The metabolism and function of sphingolipids and glycosphingolipids. Cell Mol Life Sci. 2007;64:2270–84.

    CAS  PubMed  Google Scholar 

  • Levery SB. Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol. 2005;405:300–69.

    CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K. Detergent resistance as a tool in membrane research. Nat Protoc. 2007;2:2159–65.

    CAS  PubMed  Google Scholar 

  • Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50.

    CAS  PubMed  Google Scholar 

  • London E, Brown DA. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts). Biochim Biophys Acta. 2000;1508:182–95.

    CAS  PubMed  Google Scholar 

  • Maggio B, Fanani ML, Rosetti CM, Wilke N. Biophysics of sphingolipids II. Glycosphingolipids: an assortment of multiple structural information transducers at the membrane surface. Biochim Biophys Acta. 2006;1758:1922–44.

    CAS  PubMed  Google Scholar 

  • Müthing J. TLC in structure and recognition studies of glycosphingolipids. In: Hounsell EF, editor. Methods in molecular biology, Glycoanalysis protocols, vol. 76. Totowa/New York: Humana Press; 1998. p. 183–95.

    Google Scholar 

  • Müthing J. TLC and HPLC of glycosphingolipids. In: El Rassi Z, editor. Carbohydrate analysis by modern chromatography and electrophoresis, Journal of chromatography library, vol. 66. Amsterdam: Elsevier; 2002. p. 423–82.

    Google Scholar 

  • Müthing J, Distler U. Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. Mass Spectrom Rev. 2010;29:425–79.

    PubMed  Google Scholar 

  • Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. Biochim Biophys Acta. 2009;1788:184–93.

    CAS  PubMed  Google Scholar 

  • Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insight. Nat Rev Mol Cell Biol. 2010;11:688–99.

    CAS  PubMed  Google Scholar 

  • Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:729–31.

    Google Scholar 

  • Sommer U, Herscovitz H, Welty FK, Costello CE. LC-MS-based method for the qualitative and quantitative analysis of complex lipid mixtures. J Lipid Res. 2006;47:804–14.

    CAS  PubMed  Google Scholar 

  • Sonnino S, Prinetti A, Mauri L, Chigorno V, Tettamanti G. Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chem Rev. 2006;106:2111–25.

    CAS  PubMed  Google Scholar 

  • Sonnino S, Prinetti A, Nakayama H, Yangida M, Ogawa H, Iwabuchi K. Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj J. 2009;26:615–21.

    CAS  PubMed  Google Scholar 

  • Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature. 2007;446:1023–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Prof. Dr. Dr. h.c. Helge Karch (Head of the Institute for Hygiene, University of Münster) and all collaborators of the Institute for Hygiene and the Institute of Medical Physics and Biophysics (University of Münster) for their continuous support. This work was supported by grants from the “Deutsche Forschungsgemeinschaft” (DFG)-funded cooperative projects MU845/4-1 and FR2569/1-1, the International Graduate School “Molecular Interactions of Pathogens with Biotic and Abiotic Surfaces” (GRK 1409, collaboration between the projects 3.10 and 3.6), and the Interdisciplinary Center for Clinical Research (IZKF) Münster project no. Müth2/028/10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Müthing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 European Biophysical Societies' Association (EBSA)

About this entry

Cite this entry

Meisen, I., Mormann, M., Müthing, J. (2013). Glycosphingolipids. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_588

Download citation

Publish with us

Policies and ethics