Skip to main content

J Coupling

  • Reference work entry
Encyclopedia of Biophysics

Synonyms

Scalar coupling; Spin-spin coupling

Definition

J or scalar coupling between magnetic nuclei (otherwise termed nuclear spins) is coupling via the intervening network of chemical bonds and depends on interaction between the nuclear spins and bonding electron spins.

Introduction

J or scalar coupling occurs between magnetic nuclei that are chemically bonded to one another (Cavanagh et al. 2007; Hore 1995; Rule and Hitchens 2006). Scalar coupling is important because many NMR pulse sequences used to investigate molecular structure, dynamics, and interactions depend on scalar coupling for magnetization transfer between nuclear spins. Scalar coupling, moreover, allows delineation of the chemical connectivity and stereochemistry within a molecule, be it a small molecule or biological macromolecule; together with through-space dipolar coupling, therefore, through-bond scalar coupling forms the basis of resonance assignment and NMR determination of 3D structures of molecules. Here I...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnwal RP, Rout AK, Chary KVR, Atreya HS. Rapid measurement of 3J(HN-Hα) and 3(N-Hβ) coupling constants in polypeptides. J Biomol NMR. 2007;39:259–63.

    Article  CAS  PubMed  Google Scholar 

  • Bax A, Vuister GW, Grzesiek S, Delaglio F, Wang AC, Tschudin R, Zhu G. Measurement of homonuclear and heteronuclear J-couplings from quantitative J-correlation. In: Abelson JN, Simon MI, James TL, Oppenheimer NJ, editors. Methods in enzymology: nuclear magnetic resonance, Pt C. San Diego: Academic; 1994. p. 79–105.

    Chapter  Google Scholar 

  • Billeter M, Neri D, Otting G, Qian YQ, Wüthrich K. Precise vicinal coupling-constants 3JHNα in proteins from nonlinear fits of J-modulated [15N-1H]-COSY experiments. J Biomol NMR. 1992;2:257–74.

    Article  CAS  PubMed  Google Scholar 

  • Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nature Chem Biol. 2009;5:789–96.

    Article  CAS  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer III AG, Rance M, Skelton NJ. Protein NMR spectroscopy: principles and practice. Boston: Academic; 2007.

    Google Scholar 

  • Evans JNS. Biomolecular NMR spectroscopy. Oxford: Oxford University Press; 1995.

    Google Scholar 

  • Freeman R. Spin choreography: basic steps in high resolution NMR. Oxford: Oxford University Press; 1997.

    Google Scholar 

  • Grzesiek S, Cordier F, Jaravine V, Barfield M. Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings. Prog Nucl Magn Reson Spectrosc. 2004;45:275–300.

    Article  CAS  Google Scholar 

  • Habazettl J, Allan MG, Jenal U, Grzesiek S. Solution structure of the PilZ domain protein PA4608 complex with cyclic di-GMP identifies charge clustering as molecular readout. J Biol Chem. 2011;286:14304–14.

    Article  CAS  PubMed  Google Scholar 

  • Hahnke MJ, Richter C, Heinicke F, Schwalbe H. The HN(COCA)HAHB NMR experiment for the stereospecific assignment of Hβ-protons in non-native states of proteins. J Am Chem Soc. 2010;132:918–19.

    Article  PubMed  Google Scholar 

  • Hore PJ. Nuclear magnetic resonance. Oxford: Oxford University Press; 1995.

    Google Scholar 

  • Lendel C, Damberg P. 3D J-resolved NMR spectroscopy for unstructured polypeptides: fast measurement of 3JHNHα coupling constants with outstanding spectral resolution. J Biomol NMR. 2009;44:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Liu YZ, Prestegard JH. Measurement of one and two bond N-C couplings in large proteins by TROSY-based J-modulation experiments. J Magn Reson. 2009;200:109–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Löhr F, Reckel S, Stefer S, Dötsch V, Schmidt J. Improved accuracy in measuring one-bond and two-bond 15N,13Cα coupling constants in proteins by double-inphase/antiphase (DIPAP) spectroscopy. J Biomol NMR. 2011;50:167–90.

    Article  PubMed  Google Scholar 

  • Markwick PRL, Showalter SA, Bouvignies G, Brüschweiler R, Blackledge M. Structural dynamics of protein backbone phi angles: extended molecular dynamics simulations versus experimental 3J scalar couplings. J Biomol NMR. 2009;45:17–21.

    Article  CAS  PubMed  Google Scholar 

  • Nozinovic S, Fürtig B, Jonker HR, Richter C, Schwalbe H. High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res. 2010;38:683–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otten R, Wood K, Mulder FAA. Comprehensive determination of 3JHNHα for unfolded proteins using 13C′-resolved spin-echo difference spectroscopy. J Biomol NMR. 2009;45:343–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Permi P, Annila A. Transverse relaxation optimised spin-state selective NMR experiments for measurement of residual dipolar couplings. J Biomol NMR. 2000;16:221–7.

    Article  CAS  PubMed  Google Scholar 

  • Rule GS, Hitchens TK. Fundamentals of protein NMR spectroscopy. Dordrecht: Springer; 2006.

    Google Scholar 

  • Sass HJ, Schmid FFF, Grzesiek S. Correlation of protein structure and dynamics to scalar couplings across hydrogen bonds. J Am Chem Soc. 2007;129:5898–903.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JM, Howard MJ, Maestre-Martinez M, Pérez CS, Löhr F. Variation in protein Cα-related one-bond J couplings. Magn Reson Chem. 2009;47:16–30.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JM, Hua Y, Löhr F. Correlation of 2J couplings with protein secondary structure. Proteins-Struct Funct Bioinform. 2010;78:1544–62.

    CAS  Google Scholar 

  • Schmidt JM, Zhou S, Rowe ML, Howard MJ, Williamson RA, Löhr F. One-bond and two-bond J couplings help annotate protein secondary-structure motifs: J-coupling indexing applied to human endoplasmic reticulum protein ERp18. Proteins-Struct Funct Bioinform. 2011;79:428–43.

    Article  CAS  Google Scholar 

  • Vuister GW, Tessari M, Karimi-Nejad Y, Whitehead B. Pulse sequences for measuring coupling constants. In: Krishna NR, Berliner LJ, editors. Modern techniques in protein NMR. New York: Kluwer; 1999. p. 195–257.

    Google Scholar 

  • Zandarashvili L, Li D-W, Wang T, Brüschweiler R, Iwahara J. Signature of mobile hydrogen bonding of lysine side chains from long-range 15N–13C scalar J-couplings and computation. J Am Chem Soc. 2011;133:9192–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bagby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 European Biophysical Societies' Association (EBSA)

About this entry

Cite this entry

Bagby, S. (2013). J Coupling. In: Roberts, G.C.K. (eds) Encyclopedia of Biophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16712-6_306

Download citation

Publish with us

Policies and ethics