Skip to main content

Radiation Detectors and Art

  • Reference work entry
Handbook of Particle Detection and Imaging

Abstract

The use of radiation detectors in the analysis of art objects represents a very special application in a true interdisciplinary field. Radiation detectors employed in this field detect, e.g., x-rays, γ-rays, β particles, and protons. Analyzed materials range from stones, metals, over porcelain to paintings. The available nondestructive and noninvasive analytical methods cover a broad range of techniques. Hence, for the sake of brevity, this chapter will concentrate on few techniques: Proton Induced X-ray Emission (PIXE) and Proton Induced γ-ray Emission (PIGE).

The basics of these techniques will be described together with tables and references with relevant information for this field. On selected examples, the potentials and the pitfalls of the applied methods will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bambynek W, Crasemann B, Fink RW, Freund HU, Mark H, Swift CD, Price RE, Veugopalo P (1972) X-ray fluorescence yields, Auger, and Coster-Kronig transition probabilities. Rev Mod Phys 44:716

    Article  ADS  Google Scholar 

  • Bearden JA (1967) X-ray wavelengths. Rev Mod Phys 39:78

    Article  ADS  Google Scholar 

  • Beckhoff B, Kanngieer B, Langhoff N, Wedell R, Wolff H (2006) Handbook of practical x-ray fluorescence analysis. Springer, New York

    Book  Google Scholar 

  • Boutaine JL (2006) The modern museum. In: Bradley J, Creagh D (eds) Physical techniques in the study of art, archaeology and cultural heritage, vol 1. Elsevier, Amsterdam

    Google Scholar 

  • Bradley D, Creagh D (eds) (2006/2007) Physical techniques in the study of art. Archaeology and Cultural Heritage, vols 1 and 2. Elsevier Science & Technology, Amsterdam

    Google Scholar 

  • Brandt W, Lapicki G (1981) Energy-loss effect in inner-shell Coulomb ionization by heavy charged particles. Phys Rev A23:1717

    Article  ADS  Google Scholar 

  • Calligaro T, S Colinart, Poirot JP, Sudres C (2002) Combined external-beam PIXE and -Raman characterisation of garnets used in Merovingian jewellery. Nucl Instrum Methods Phys Res B 189:320

    Article  ADS  Google Scholar 

  • Campbell JL, Maxwell JA, Teesdale WJ (2005) The guelph-pixe software package-II. Nucl Instrum Methods B 95:407–421

    ADS  Google Scholar 

  • Chadwick J (1912) Philos Mag 24:594

    Google Scholar 

  • Clayton E (1986) PIXAN: the Lucas heights PIXE analysis computer package, AAEC/M113

    Google Scholar 

  • Coster D, De Kronig RL (1935) New type of Auger effect and its influence on the x-ray spectrum. Physica 2(1–12):13–24

    Article  MATH  ADS  Google Scholar 

  • Demortier G, Adriens A (eds) (2000) Ion beam study of art and archaeological objects. European Communities, Luxembourg

    Google Scholar 

  • Denker A, Bohne W, Campbell JL, Heide P, Hopman T, Maxwell JA, Opitz-Coutureau J, Rauschenberg J, Rhrich J, Strub E (2005) High-energy PIXE using very energetic protons: quantitative analysis and cross sections. X-Ray Spectrom B 34:376–380

    Article  Google Scholar 

  • Denker A, Adriaens A, Dowsett M, Giumlia-Mair A (eds) (2006) COST action G8: non-destructive testing and analysis of museum objects. Fraunhofer IRB Verlag, Stuttgart, ISBN 978-3-8167-7178-4

    Google Scholar 

  • Duval A, Guicharnaud H, Dran JC (2004) Particle induced X-ray emission: a valuable tool for the analysis of metalpoint drawings. Nucl Instrum Methods Phys Res B 226:60–74

    Article  ADS  Google Scholar 

  • Gaschen A, Krhenbhl U (2005) PSI laboratory of radiochemistry and environmental chemistry, Annual Report. http://lch.web.psi.ch/files/ http://anrep05/abstract05.html

  • Goldstein JI, Newbury DE, Echlin P, Joy DC, Romig AD, Lyman CE, Fiori C, Lifshin E (1992) Scanning electron microscopy and x-ray microanalysis. Plenum, New York

    Book  Google Scholar 

  • Grassi N, Migliori A, Mand PA, Calvo del Castillo H (2005) Differential PIXE measurements for the stratigraphic analysis of the painting Madonna dei fusi by Leonardo da Vinci. X-Ray Spectrom 34:306–309

    Article  Google Scholar 

  • Griesser M, Denker A, Musner H, Maier KH (2000) Non-destructive investigation of paint layer sequences. In: Roy A, Smith P (eds) Tradition and innovation advances in conservations, Contributions to IIC Melbourne Congress 82

    Google Scholar 

  • Hubbell H, Seltzer SM (1995) Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients, originally published as NISTIR 5632. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  • Johansson SAE, Campbell JL (1988a) Pixe: a novel technique for elemental analysis. Wiley, New York, p 12

    Google Scholar 

  • Johansson SAE, Campbell JL (1988b) Pixe: a novel technique for elemental analysis. Wiley, New York

    Google Scholar 

  • Johansson TB, Akelsson KR, Johansson SAE (1970) X-ray analysis: elemental trace analysis at the 10-12 g level. Nucl Instrum Methods 84:141

    Article  ADS  Google Scholar 

  • Johansson SAE, Campbell JL, Malmqvist K (1995) Particle-induced X-ray emission spectrometry (Pixe). Wiley, New york

    Google Scholar 

  • Janssens K, Van Grieken R (eds) (2005) Non-destructive micro analysis of cultural heritage materials. In: Comprehensive analytical chemistry, vol 42. Elsevier Science, Amsterdam

    Google Scholar 

  • Kardjilov N, Lo Celso F, Donato DI et al (2007) Nuovo Cimento della Societa Italiana di fisica. C-Geophys Space Phys 30-1:79–83

    Google Scholar 

  • Koch B (1983) Der Wiener Pfennig. Ein Kapitel aus der Periode der regionalen Pfennigmnze (Numismatische Zeitschrift 97), Wien

    Google Scholar 

  • Krause MO (1979) Atomic radiative and radiationless yields for K and L shells. J Phys Chem Ref Data 8:307

    Article  ADS  Google Scholar 

  • Lang J (ed) (2005) Radiography of cultural material, 2nd edn. Oxford, Butterworth-Heinemann

    Google Scholar 

  • Lapicki G (2009) Evaluation of cross sections for Lα x-ray production by up to 4 MeV protons in representative elements from silver to uranium. J Phys B Atom Mol Opt Phys 42:145204

    Google Scholar 

  • Mder M, Neelmeijer C (2004) Proton beam examination of glass an analytical contribution for preventive conservation. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 226(1–2):110–118

    Article  ADS  Google Scholar 

  • Mand PA (1995) Advantages and limitations of external beams in application to art & archaeology, geology and environmental problems. Nucl Instrum Methods B 85:815

    Article  ADS  Google Scholar 

  • Moseley HGJ (1913) The high-frequency spectra of the elements. Philos Mag 26:1024

    Google Scholar 

  • Neelmeijer C, Wagner W, Schramm HP (1996) Depth resolved ion beam analysis of objects of art. Nucl Instrum Methods B 118:338

    Article  ADS  Google Scholar 

  • Orlic I, Sow CH, Tang SM (1994) Experimental L-Shell X-ray production and ionization cross sections for proton impact. Atom Data Nucl Data Tables 56:159

    Article  ADS  Google Scholar 

  • Paul H, Sacher J (1989) Fitted empirical reference cross sections for K-shell ionization by protons. Atom Data Nucl Data Tables 42:105

    Article  ADS  Google Scholar 

  • Perujo A, Maxwell JA, Teesdale WJ, Campbell JL (1987) Deviation of the Kβ/Kα intensity ratio from theory observed in proton-induced X-ray spectra in the 22 < Z < 32 region. J Phys B Atom Mol Phys 20:4973

    Article  ADS  Google Scholar 

  • Respaldiza MA, Gmez-Camacho J (1997) Applications of ion beam analysis techniques to arts and archaeometry. Universidad de Sevilla, Spain

    Google Scholar 

  • Ryan CG, Cousens DR, Sie SH, Griffin WL (1990) Quantitative analysis of PIXE spectra in geoscience applications. Nucl Instrum Methods B 49:271

    Article  ADS  Google Scholar 

  • Scofield JH (1974) Exchange corrections of K x-ray emission rates. Phys Rev A9:1041

    Article  ADS  Google Scholar 

  • Sera K, Futatsugawa S (1996) Personal computer aided data handling and analysis for PIXE. Nucl Instrum Methods B 109–110:99

    Article  Google Scholar 

  • Szabo G, Borbely-Kiss I (1993) PIXYKLM computer package for PIXE analyses. Nucl Instrum Methods B 75:123

    Article  ADS  Google Scholar 

  • Tesmer JR, Nastasi MA (1995) Handbook of modern ion beam materials analysis. Materials Research Society Handbook, Amsterdam

    Google Scholar 

  • The Metropolitan Museum of Art (1982) Art and autoradiography: insight into the genesis of paintings by Rembrandt, Van Dyck and Vermeer. The Metropolitan Museum of Art, New York

    Google Scholar 

  • Tuurnala T, Hautojrvi A (2000) Original or forgery  pigment analysis of paintings using ion beams an ionising radiation. In: Demortier G, Adriaens A (eds) Ion beam study of art and archaeological objects. European Commission EUR 19218 21. Office for Official Publications of the European Communities, Luxembourg

    Google Scholar 

  • Vekemans B, Jensens K, Vincze L, Adams F, Van Espen P (1994) Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom 23:278

    Article  Google Scholar 

  • Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids, stopping and range of ions in matter, vol 1. Pergamon, New York

    Google Scholar 

  • Zucchiatti A, Bouquillon G, Lanterna F, Lucarelli PA, Mand P, Prati J, Salomon MG (2002) Vaccari, PIXE and -PIXE analysis of glazes from terracotta sculptures of the della Robbia workshop. Nucl Instrum Methods B 189:358

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Denker, A. (2012). Radiation Detectors and Art. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_34

Download citation

Publish with us

Policies and ethics