Skip to main content

Indirect Detection of Cosmic Rays

  • Reference work entry

Abstract

Cosmic rays entering the Earth’s atmosphere interact with the nuclei of air and produce cascades of secondary particles. At high energy (E≳1014eV), these particle cascades are called extensive air showers and provide a means of measuring flux, arrival direction distribution, and elemental composition of cosmic rays. In this article, an introduction to the phenomenology of extensive air showers and parametrizations for their description is given. The concepts and key ideas of detecting extensive air showers are presented and methods for reconstructing the properties of the primary particles are discussed. Several representative experiments are reviewed to illustrate practical implementations of air shower detection concepts. The article concludes with a discussion of open problems and future detection techniques that are currently under development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbasi R et al. (HiRes Collab.) (2006) Techniques for measuring atmospheric aerosols at the high resolution fly’s eye experimen. Astropart Phys 25:74–83

    Article  ADS  Google Scholar 

  • Abbasi RU et al. (HiRes Collab.) (2007) Search for point-like sources of cosmic rays with energies above 1018:5eV in the HiRes-I monocular data-set. Astropart Phys 27:512–520

    Article  ADS  Google Scholar 

  • Abdo AA et al. (Milagro Collab.) (2007) TeV gamma-ray sources from a survey of the Galactic Plane with Milagro. Astrophys J 664:L91–L94

    Article  ADS  Google Scholar 

  • Abdo AA et al. (Milagro Collab.) (2008a) A measurement of the spatial distribution of diffuse TeV gamma ray emission from the Galactic Plane with Milagro. Astrophys J 688:1078–1083

    Article  ADS  Google Scholar 

  • Abdo AA et al. (Milagro Collab.) (2008b) Discovery of localized regions of excess 10-TeV cosmic rays. Phys Rev Lett 101:221101

    Article  Google Scholar 

  • Abraham J et al. (Pierre Auger Collab.) (2004) Properties and performance of the prototype instrument for the Pierre Auger observatory. Nucl Instrum Meth A52:50–95

    ADS  Google Scholar 

  • Abraham J et al. (Pierre Auger Collab.) (2007) Correlation of the highest energy cosmic rays with nearby extragalactic objects. Science 318:938–943

    Article  ADS  Google Scholar 

  • Abraham J et al. (Pierre Auger Collab.) (2008a) Observation of the suppression of the flux of cosmic rays above 4 ×1019eV. Phys Rev Lett 101:061101

    Article  ADS  Google Scholar 

  • Abraham J et al. (Pierre Auger Collab.) (2008b) Upper limit on the diffuse flux of UHE tau neutrinos from the Pierre Auger observatory. Phys Rev Lett 100:211101

    Article  ADS  Google Scholar 

  • Abraham J et al. (Pierre Auger Collab.) (2008c) Upper limit on the cosmic-ray photon flux above 1019eV using the surface detector of the Pierre Auger observatory. Astropart Phys 29:243–256

    Article  ADS  Google Scholar 

  • Abraham J et al. (Pierre Auger Collab.) (2009) Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory. In: Proceedings of 31th International Cosmic Ray Conference, Lodz

    Google Scholar 

  • Abraham J et al. (Pierre Auger Collab.) (2010a) A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger observatory. Astropart Phys 33:108–129

    Article  ADS  Google Scholar 

  • Abraham J et al. (Pierre Auger Collab.) (2010b) Measurement of the Depth of Maximum of Extensive Air Showers above 1018eV. Phys Rev Lett 104:091101

    Article  ADS  Google Scholar 

  • Abraham J et al. (Pierre Auger Collab.) (2010) Trigger and aperture of the surface detector array of the Pierre Auger observator. Nucl Instrum Meth A613:29–39

    Article  ADS  Google Scholar 

  • Abraham JA et al. (Pierre Auger Collab.) (2010) The fluorescence detector of the Pierre Auger observatory. Nucl Instrum Meth A620:227–251

    Article  ADS  Google Scholar 

  • Abu-Zayyad T et al. (HiRes Collab.) (2000) The prototype high-resolution Fly’s Eye cosmic ray detector. Nucl Instrum Meth A450:253–269

    Article  ADS  Google Scholar 

  • Aglietta M et al. (EAS-TOP and MACRO Collab.) (2004a) The cosmic ray proton, helium and CNO fluxes in the 100-TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP. Astropart Phys 21:223–240

    Article  ADS  Google Scholar 

  • Aglietta M et al. (EAS-TOP Collab.) (2004b) The cosmic ray primary composition in the “knee” region through the EAS electromagnetic and muon measurements at EAS-TOP. Astropart Phys 21:583–596

    Article  ADS  Google Scholar 

  • Aglietta M et al. (MACRO Collab.) (2004c) The primary cosmic ray composition between 1016eV and 1015eV from extensive air showers electromagnetic and TeV muon data. Astropart Phys 20:641–652

    Article  ADS  Google Scholar 

  • Aglietta M et al. (Pierre Auger Collab.) (2007) Anisotropy studies around the galactic centre at EeV energies with the Auger observatory. Astropart Phys 27:244–253

    Article  ADS  Google Scholar 

  • Aharonian F et al. (H.E.S.S. Collab.) (2005) A new population of very high energy gamma-ray sources in the Milky Way. Science 307:1938–1942

    Article  ADS  Google Scholar 

  • Aharonian F et al. (H.E.S.S. Collab.) (2006) A detailed spectral and morphological study of the gamma-ray supernova remnant RX J1713.7-3946 with H.E.S.S. Astron Astrophys 449:223–242

    Article  ADS  Google Scholar 

  • Aharonian F et al. (H.E.S.S. Collab.) (2006) Discovery of very-high-energy gamma-rays from the galactic centre ridge. Nature 439:695–698

    Article  ADS  Google Scholar 

  • Aharonian F et al. (H.E.S.S. Collab.) (2007) First ground based measurement of atmospheric Cherenkov light from cosmic rays. Phys Rev D75:042004

    ADS  Google Scholar 

  • Aharonian F et al. (H.E.S.S. Collab.) (2008) The energy spectrum of cosmic-ray electrons at TeV energies. Phys Rev Lett 101:261104

    Article  ADS  Google Scholar 

  • Aharonian F et al. (HESS Collab.) (2006) The HESS survey of the inner galaxy in very high-energy gamma-rays. Astrophys J 636:777–797

    Article  ADS  Google Scholar 

  • Aharonian F, Buckley J, Kifune T, Sinnis G (2008) High energy astrophysics with ground-based gamma ray detectors. Rept Prog Phys 71:096901

    Article  ADS  Google Scholar 

  • Aharonian FA et al. (HESS Collab.) (2004) High-energy particle acceleration in the shell of a supernova remnant. Nature 432:75–77

    Article  ADS  Google Scholar 

  • Ahn EJ, Engel R, Gaisser TK, Lipari P, Stanev T (2009) Cosmic ray interaction event generator SIBYLL 2.1. Phys Rev D 80:094003

    Google Scholar 

  • Aielli G et al. (Argo-YBJ Collab.) (2006) Layout and performance of RPCs used in the Argo-YBJ experiment. Nucl Instrum Meth A562:92–96

    Article  ADS  Google Scholar 

  • Allan HR (1971) Radio emission from extensive air showers. Prog Element Part Cos Ray Phys 10:171

    Google Scholar 

  • Allard D, Busca NG, Decerprit G, Olinto AV, Parizot E (2008) Implications of the cosmic ray spectrum for the mass composition at the highest energies. J Cosmol Astropart Phys 0810:033

    Article  ADS  Google Scholar 

  • Alvarez-Muniz J, Engel R, Gaisser TK, Ortiz JA, Stanev T (2002) Hybrid simulations of extensive air showers. Phys Rev D66:033011

    Article  ADS  Google Scholar 

  • Amenomori M et al. (1990) Development and a performance test of a prototype air shower array for search for gamma-ray point sources in the very high-energy region. Nucl Instrum Meth A288:619

    Article  ADS  Google Scholar 

  • Anchordoqui L et al. (2004) High energy physics in the atmosphere: phenomenology of cosmic ray air showers. Ann Phys 314:145–207

    Article  MATH  ADS  Google Scholar 

  • Anchordoqui LA et al. (2010) Using cosmic neutrinos to search for non-perturbative physics at the Pierre Auger Observatory. Phys Rev D82:043001

    Article  ADS  Google Scholar 

  • Antokhonov B et al. (TUNKA Collab.) (2011) The new Tunka-133 EAS Cherenkov array: status of 2009. Nucl Instrum Meth A628:124–127

    Article  ADS  Google Scholar 

  • Antoni T et al. (2004) A large area limited streamer tube detector for the air shower experiment KASCADE-Grande. Nucl Instrum Meth A533:387–403

    ADS  Google Scholar 

  • Antoni T et al. (KASCADE Collab.) (1999) Test of high-energy interaction models using the hadronic core of EAS. J Phys G: Nucl Part Phys 25:2161

    ADS  Google Scholar 

  • Antoni T et al. (KASCADE Collab.) (2001) Test of hadronic interaction models in the forward region with KASCADE event rates. J Phys G27:1785–1798

    ADS  Google Scholar 

  • Antoni T et al. (KASCADE Collab.) (2003a) Preparation of enriched cosmic ray mass groups with KASCADE. Astropart Phys 19:715–728

    Article  ADS  Google Scholar 

  • Antoni T et al. (KASCADE Collab.) (2003b) The Cosmic ray experiment KASCADE. Nucl Instrum Meth A513:490–510

    Article  ADS  Google Scholar 

  • Antoni T et al. (KASCADE Collab.) (2005) KASCADE measurements of energy spectra for elemental groups of cosmic rays: results and open problems. Astropart Phys 24:1–25

    Article  ADS  Google Scholar 

  • Apel W et al. (KASCADE-Grande Collab.) (2010) The KASCADE-Grande experiment. Nucl Instrum Meth A620:202–216

    Article  ADS  Google Scholar 

  • Apel W et al. (LOPES Collab.) (2010) Lateral distribution of the radio signal in extensive air showers measured with LOPES. Astropart Phys 32:294–303

    Article  ADS  Google Scholar 

  • Apel WB et al. (KASCADE Collab.) (2006) Comparison of measured and simulated lateral distributions for electrons and muons with KASCADE. Astropart Phys 24:467–483

    Article  ADS  Google Scholar 

  • Apel WD et al. (KASCADE Collab.) (2007) Test of interaction models up to 40PeV by studying hadronic cores of EAS. J Phys G34:2581–2593

    ADS  Google Scholar 

  • Arciprete F et al. (2006) AIRFLY: Measurement of the air fluorescence radiation induced by electrons. Nucl Phys Proc Suppl 150:186–189

    Article  ADS  Google Scholar 

  • Ardouin D et al. (2011) First detection of extensive air showers by the TREND self-triggering radio experiment. Astropart Phys 34:717–731

    Article  ADS  Google Scholar 

  • Ardouin D et al. (CODALEMA Collab.) (2005) Radio-detection signature of high-energy cosmic rays by the CODALEMA experiment. Nucl Instrum Meth A555:148–163

    Article  ADS  Google Scholar 

  • Ardouin D et al. (CODALEMA Collab.) (2006) Radioelectric field features of extensive air showers observed with CODALEMA. Astropart Phys 26:341–350

    Article  ADS  Google Scholar 

  • Ardouin D et al. (CODALEMA Collab.) (2009) Geomagnetic origin of the radio emission from cosmic ray induced air showers observed by CODALEMA. Astropart Phys 31(3):192–200

    Article  ADS  Google Scholar 

  • Arqueros F, Hoerandel JR, Keilhauer B (2008) Air fluorescence relevant for cosmic-ray detection – summary of the 5th fluorescence workshop, El Escorial 2007. Nucl Instrum Meth A597:1–22

    ADS  Google Scholar 

  • Askaryan GA (1961) Excess negative charge of an electron shower and its coherent radio emission. J Exp Theor Phys 14:441–443

    Google Scholar 

  • Askaryan GA (1965) Coherent radio emission from cosmic showers in air and in dense media. J Exp Theor Phys 48:658–659

    ADS  Google Scholar 

  • Atkins R et al. (Milagro Collab.) (2004) TeV gamma-ray survey of the northern hemisphere sky using the Milagro observatory. Astrophys J 608: 680–685

    Google Scholar 

  • Atkins RW et al. (Milagro Collab.) (2005) Evidence for TeV gamma-ray emission from the Galactic plane. Phys Rev Lett 95:251103

    Google Scholar 

  • Auger P, Ehrenfest P, Maze RR, Freon A (1939) Extensive cosmic-ray showers. Rev Mod Phys 11:288–291

    Article  ADS  Google Scholar 

  • Ave M et al. (2003) Mass composition of cosmic rays in the range 2 ×1017−3 ×1018eV measured with the Haverah Park array. Astropart Phys 19: 61–75

    Article  ADS  Google Scholar 

  • Ave M, Knapp J, Marchesini M, Roth M, Watson AA (2003) Time structure of the shower front as measured at Haverah Park above 1019eV. In: Proceedings of 28th International Cosmic Ray Conference, Tsukuba, p 349

    Google Scholar 

  • Ballarini F et al. (2006) The FLUKA code: an overview. J Phys Conf Ser 41:151–160

    Article  ADS  Google Scholar 

  • Baltrusaitis RM et al. (Fly’s Eye Collab.) (1985) The Utah Fly’s Eye detector. Nucl Instrum Meth A240:410–428

    Google Scholar 

  • Barbosa HMJ, Catalani F, Chinellato JA, Dobrigkeit C (2004) Determination of the calorimetric energy in extensive air showers. Astropart Phys 22: 159–166

    Article  ADS  Google Scholar 

  • Battistoni G, Forti C, Ranft J, Roesler S (1997) Deviations from the super-position model in a dual parton model applied to cosmic ray interactions with formation zone cascade in both projectile and target nuclei. Astropart Phys 7:49–62

    Article  ADS  Google Scholar 

  • Beatty JJ, Westerhoff S (2009) The highest-energy cosmic rays. Ann Rev Nucl Part Sci 59: 319–345

    Article  ADS  Google Scholar 

  • Bell CJ (1976) A recalculation of the upper end of the cosmic ray energy spectrum. J Phys G Nucl Phys 2:867–880

    Article  ADS  Google Scholar 

  • BenZvi SY et al. (2007) The lidar system of the Pierre Auger observatory. Nucl Instrum Meth A574:171–184

    ADS  Google Scholar 

  • Berezinsky V, Gazizov AZ, Grigorieva SI (2006) On astrophysical solution to ultra high energy cosmic rays. Phys Rev D74:043005

    Article  ADS  Google Scholar 

  • Bergeson HE et al. (1977) Measurement of light emission from remote cosmic ray showers. Phys Rev Lett 39:847–849

    Article  ADS  Google Scholar 

  • Bergmann T et al. (2007) One-dimensional hybrid approach to extensive air shower simulation. Astropart Phys 26:420–432

    Article  ADS  Google Scholar 

  • Bernlöhr K (2000) Impact of atmospheric parameters on the atmospheric Cherenkov technique. Astropart Phys 12:255–268

    Article  ADS  Google Scholar 

  • Bernlöhr K et al. (H.E.S.S. Collab.) (2003) The optical system of the HESS imaging atmospheric Cherenkov telescopes, Part 1: layout and components of the system. Astropart Phys 20:111–128

    Google Scholar 

  • Bird DJ et al. (Fly’s Eye Collab.) (1995) Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation. Astrophys J 441: 144–150

    Google Scholar 

  • Blandford R, Eichler D (1987) Particle acceleration at astrophysical shocks: a theory of cosmic ray origin. Phys Rept 154:1–75

    Article  ADS  Google Scholar 

  • Blümer J (Pierre Auger Collab.) (2003) Cosmic rays at the highest energies and the Pierre Auger observatory. J Phys G29:867–879

    Google Scholar 

  • Blümer J, Engel R, Hörandel JR (2009) Cosmic rays from the knee to the highest energies. Prog Part Nucl Phys 63:293–338

    Article  ADS  Google Scholar 

  • Blümer J, Engler J, Hörandel JR (2011) Detectors for astroparticle physics. Springer monographs, in press, 2011

    Google Scholar 

  • Bonifazi C et al. (Pierre Auger Collab.) (2005) Angular resolution of the Pierre Auger Observatory. In: Proceedings of 29th International Cosmic Ray Conference, Pune, p 17

    Google Scholar 

  • Borla Tridon D, Schweizer T, Goebel F, Mirzoyan R, Teshima M (MAGIC Collab.) (2010) The MAGIC-II gamma-ray stereoscopic telescope system. Nucl Instrum Meth A623:437–439

    Google Scholar 

  • Boyer J, Knapp B, Mannel E, Seman M (2002) FADC-based DAQ for HiRes Fly’s Eye. Nucl Instrum Meth A482:457–474

    ADS  Google Scholar 

  • Bozdog H et al. (2001) The detector system for measurement of multiple cosmic muons in the central detector of KASCADE. Nucl Instrum Meth A465:455–471

    ADS  Google Scholar 

  • Budnev NM et al. (2009) The cosmic ray mass composition in the energy range 1015–1018eV measured with the Tunka Array: Results and Perspectives arXiv:0902.3156 [astro-ph.HE]

    Google Scholar 

  • Cao Z (ARGO-YBJ & LHAASO Collab.) (2010) The ARGO-YBJ Experiment Progresses and Future Extension, arXiv:1006.4298 [hep-ex]

    Google Scholar 

  • Capdevielle J et al. (2002) Lateral-distribution functions for giant air showers. Nuovo Cim C25: 393–424

    ADS  Google Scholar 

  • Chauvin J, Riviere C, Montanet F, Lebrun D, Revenu B (2010) Radio emission in a toy model with point-charge-like air showers Astropart Phys 33:341–350

    Google Scholar 

  • Chiba N et al. (AGASA Collab.) (1992) Akeno giant air shower array (AGASA) covering 100-km2 area. Nucl Instrum Meth A311:338–349

    Google Scholar 

  • Cillis AN, Fanchiotti H, Garcia Canal CA, Sciutto SJ (1999) Influence of the LPM effect and dielectric suppression on particle air showers. Phys Rev D59:113012

    Article  ADS  Google Scholar 

  • Conti E, Sartori G, Viola G (2011) Measurement of the near-infrared fluorescence of the air for the detection of ultra-high-energy cosmic rays. Astropart Phys 34:333–339

    Article  ADS  Google Scholar 

  • Corcella G et al. (2001) HERWIG 6.5: an event generator for Hadron Emission Reactions With Interfering Gluons (including supersymmetric processes), JHEP 01 (2001) 010

    Google Scholar 

  • Cornils R et al. (H.E.S.S. Collab.) (2003) The optical system of the HESS imaging atmospheric Cherenkov telescopes, Part 2: Mirror alignment and point spread function. Astropart Phys 20:29–143

    Google Scholar 

  • Dai HY, Kasahara K, Matsubara Y, Nagano M, Teshima M (1988) On the energy estimation of ultrahigh-energy cosmic rays observed with the surface detector array. J Phys G14:793–805

    ADS  Google Scholar 

  • Dallier R (Pierre Auger Collab.) (2011) Measuring cosmic ray radio signals at the Pierre Auger Observatory. Nucl Instrum Meth A630:218–221

    Google Scholar 

  • de Vries KD, Scholten O, Werner K (2010a) Macroscopic Geo-Magnetic Radia-tion Model: Polarization effects and finite volume calculations, arXiv:1010.5364 [astro-ph.HE]

    Google Scholar 

  • de Vries KD, v. d. Berg AM, Scholten O, Werner K (2010b) The lateral distribution function of coherent radio emission from extensive air showers: determining the chemical composition of cosmic rays, arXiv:1008.3308 [astro-ph.HE]

    Google Scholar 

  • Doll P et al. (2002) Muon tracking detector for the air shower experiment KASCADE. Nucl Instrum Meth A488:517–535

    ADS  Google Scholar 

  • Domokos G, Kovesi-Domokos S (1999) Strongly interacting neutrinos and the highest energy cosmic rays. Phys Rev Lett 82:1366–1369

    Article  ADS  Google Scholar 

  • Dova MT et al. (2009) Time asymmetries in extensive air showers: a novel method to identify UHECR species. Astropart Phys 31:312–319

    Article  ADS  Google Scholar 

  • Dova MT, Mancenido ME, Mariazzi AG, McCauley TP, Watson AA (2004) The mass composition of cosmic rays near 1018eV as deduced from measurements made at Volcano Ranch. Astropart Phys 21:597–607

    Article  ADS  Google Scholar 

  • Drescher HJ, Farrar GR (2003) Air shower simulations in a hybrid approach using cascade equations. Phys Rev D67:116001

    Article  ADS  Google Scholar 

  • Drescher HJ, Farrar GR (2003) Dominant contributions to lateral distribution functions in ultra-high energy cosmic ray air showers. Astropart Phys 19:235–244

    Article  ADS  Google Scholar 

  • DuVernois MA, Cai B, Kleckner D (2005) Geosynchrotron radio pulse emission from extensive air showers: simulations with AIRES. In: Proceedings of 29th International Cosmic Ray Conference (ICRC 2005), vol 8. Pune, India, 3–11 Aug 2005, pp 311–314

    Google Scholar 

  • Edge DM, Evans AC, Garmston HJ (1973) The cosmic ray spectrum at energies above 1017eV. J Phys A 6:1612–1634

    Article  ADS  Google Scholar 

  • Engel J, Gaisser TK, Stanev T, Lipari P (1992) Nucleus-nucleus collisions and interpretation of cosmic ray cascades. Phys Rev D46: 5013–5025

    ADS  Google Scholar 

  • Engel R, Heck D, Pierog T (2011) Extensive air showers and hadronic interactions at high energy. Ann Rev Nucl Part Sci 61, in print

    Google Scholar 

  • Engel R, Kalmykov NN, Konstantinov AA (2006) Simulation of radio signals from 1-TeV to 10-TeV air showers using EGSnrc. Int J Mod Phys A21S1:65–69

    Google Scholar 

  • Engler J et al. (1999) A warm-liquid calorimeter for cosmic-ray hadrons. Nucl Instrum Meth A427:528–542

    ADS  Google Scholar 

  • Erber T (1966) High-energy electromagnetic conversion processes in intense magnetic fields. Rev Mod Phys 38:626–659

    Article  ADS  MathSciNet  Google Scholar 

  • Falcke H et al. (LOPES Collab.) (2005) Detection and imaging of atmospheric radio flashes from cosmic ray air showers. Nature 435:313–316

    Google Scholar 

  • Falcke H, Gorham P (2003) Detecting radio emission from cosmic ray air showers and neutrinos with a digital radio telescope. Astropart Phys 19:477–494

    Article  ADS  Google Scholar 

  • Feng JL, Shapere AD (2002) Black hole production by cosmic rays. Phys Rev Lett 88:021303

    Article  ADS  Google Scholar 

  • Ferenc D (MAGIC Collab.) (2005) The MAGIC gamma-ray observatory. Nucl Instrum Meth A553:274–281

    Google Scholar 

  • Ferrari A, Sala PR, Fasso A, Ranft J (2005) FLUKA: a multi-particle transport code (Program version 2005), CERN-2005-010

    Google Scholar 

  • Fick B et al. (2006) The central laser facility at the Pierre Auger observatory. J Instrum 1:P11003

    Article  Google Scholar 

  • Fowler F, Fortson L, Jui C, Kieda D, Ong R et al. (2001) A Measurement of the cosmic ray spectrum and composition at the knee. Astropart Phys 15:49–64

    Article  ADS  Google Scholar 

  • Gaisser TK (1990) Cosmic rays and particle physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gaisser TK, Hillas AM (1977) Reliability of the method of constant intensity cuts for reconstructing the average development of vertical showers. In: Proceedings of 15th International Cosmic Ray Conference, vol 8. Plovdiv, p 358

    Google Scholar 

  • Giller M, Kacperczyk A, Malinowski J, Tkaczyk W, Wieczorek G (2005) Similarity of extensive air showers with respect to the shower age. J Phys G31:947–958

    ADS  Google Scholar 

  • Glasmacher MAK et al. (CASA-MIA Collab.) (1999) The cosmic ray composition between 1014eV and 1016eV. Astropart Phys 12:1–17

    Google Scholar 

  • Glück M, Kretzer S, Reya E (1999) Dynamical QCD predictions for ultrahigh energy neutrino cross sections. Astropart Phys 11:327–334

    Article  ADS  Google Scholar 

  • Glushkov A, Diminshtein Q, Efimov N, Kaganov L, Pravdin M (1976) Measurements of energy spectrum of primary cosmic rays in the energy range above 1017eV. Izv Akad Nauk Ser Fiz 40: 1023–1025

    Google Scholar 

  • Gorham PW (2001) On the possibility of radar echo detection of ultra-high energy cosmic ray and neutrino induced extensive air showers. Astropart Phys 15:177–202

    Article  ADS  Google Scholar 

  • Gorham PW et al. (2008) Observations of microwave continuum emission from air shower plasmas. Phys Rev D78:032007

    Article  ADS  Google Scholar 

  • Gorodetzky P (JEM-EUSO Collab.) (2011) Status of the JEM EUSO telescope on international space station. Nucl Instrum Meth A626–627:S40–S43

    Google Scholar 

  • Greisen K (1956) The extensive air showers. Prog Cosmic Ray Phys 3:1–141

    Google Scholar 

  • Greisen K (1966) End to the cosmic ray spectrum? Phys Rev Lett 16:748–750

    Article  ADS  Google Scholar 

  • Grieder PKF (2010) Extensive air showers: high energy phenomena and astrophysical aspects – a tutorial, reference manual and data book. Springer, Berlin

    MATH  Google Scholar 

  • Hörandel JR (2004) Models of the knee in the energy spectrum of cosmic rays. Astropart Phys 21: 241–265

    Article  ADS  Google Scholar 

  • Hörandel JR (2007) Cosmic rays from the knee to the second knee: 1014eV to 1018eV. Mod Phys Lett A22:1533–1552

    ADS  Google Scholar 

  • Haungs A, Rebel H, Roth M (2003) Energy spectrum and mass composition of high-energy cosmic rays. Rept Prog Phys 66:1145–1206

    Article  ADS  Google Scholar 

  • Heck D, Knapp J, Capdevielle J, Schatz G, Thouw T (1998) CORSIKA: a Monte Carlo code to simulate extensive air showers, Wissenschaftliche Berichte, Forschungszentrum Karlsruhe FZKA 6019

    Google Scholar 

  • Hillas AM (1982a) Angular and energy distributions of charged particles in electron photon cascades in air. J Phys G8:1461–1473

    ADS  Google Scholar 

  • Hillas AM (1982b) The sensitivity of Cherenkov radiation pulses to the longitudinal development of cosmic ray showers. J Phys G8:1475–1492

    ADS  Google Scholar 

  • Hillas AM (1996) Differences between gamma-ray and hadronic showers. Space Sci Rev 75: 17–30

    Article  ADS  Google Scholar 

  • Hillas AM (2005) Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays? J Phys G31:R95–R131

    ADS  Google Scholar 

  • Hinton JA, Hofmann W (2009) Teraelectronvolt astronomy. Ann Rev Astron Astrophys 47: 523–565

    Article  ADS  Google Scholar 

  • Hofmann W, Martinez M (CTA Consortium) (2010) Design concepts for the cherenkov telescope array, arXiv:1008.3703 [astro-ph.IM]

    Google Scholar 

  • Homola P et al. (2005) Simulation of ultra-high energy photon propagation in the geomagnetic field. Comput Phys Commun 173:71

    Article  ADS  Google Scholar 

  • Homola P et al. (2007) Characteristics of geomagnetic cascading of ultra-high energy photons at the southern and northern sites of the Pierre Auger observatory. Astropart Phys 27:174–184

    Article  ADS  Google Scholar 

  • Hoover S et al. (ANITA Collab.) (2010) Observation of ultra-high-energy cosmic rays with the ANITA balloon-borne radio interferometer. Phys Rev Lett 105:151101

    Google Scholar 

  • Huege T, Falcke H (2003) Radio emission from cosmic ray air showers: coherent geosynchrotron radiation. Astron Astrophys 412:19–34

    Article  ADS  Google Scholar 

  • Huege T, Ludwig M, Scholten O, de Vriew KD (2010) The convergence of EAS radio emission models and a detailed comparison of REAS3 and MGMR simulations, arXiv:1009.0346 [astro-ph.HE]

    Google Scholar 

  • Huege T, Ulrich R, Engel R (2007) Monte Carlo simulations of geosynchrotron radio emission from CORSIKA-simulated air showers. Astropart Phys 27:392–405

    Article  ADS  Google Scholar 

  • Huege T, Ulrich R, Engel R (2008) Energy and composition sensitivity of geosynchrotron radio emission from cosmic ray air showers. Astropart Phys 30:96–104

    Article  ADS  Google Scholar 

  • Ivanov AA, Knurenko SP, Sleptsov IY (2009) Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays. New J Phys 11:065008

    Article  Google Scholar 

  • Jain P, McKay DW, Panda S, Ralston JP (2000) Extra dimensions and strong neutrino nucleon interactions above 1019eV: Breaking the GZK barrier. Phys Lett B484:267–274

    ADS  Google Scholar 

  • Jelley J et al. (1965) Radio pulses from extensive cosmic-ray air showers. Nature 205:327–328

    Article  ADS  Google Scholar 

  • Kahn FD, Lerche I (1966) Radiation from cosmic ray air showers. Proc Roy Soc Lond A-289:206

    Article  ADS  Google Scholar 

  • Kalmykov NN, Konstantinov AA, Engel R (2009) Radio emission from extensive air showers as a method for cosmic-ray detection. Phys Atom Nucl 73:1191–1202

    Article  ADS  Google Scholar 

  • Kalmykov NN, Ostapchenko SS (1989) Comparison of characteristics of the nucleus nucleus interaction in the model of quark-gluon strings and in the superposition model. Sov J Nucl Phys 50:315–318

    Google Scholar 

  • Karle A et al. (1995) Design and performance of the angle integrating Cherenkov array AIROBICC. Astropart Phys 3:321–347

    Article  ADS  Google Scholar 

  • Kasahara K et al., COSMOS http://cosmos.n.kanagawa-u.ac.jp/cosmosHome

  • Kawai H et al. (TA Collab.) (2008) Telescope array experiment. Nucl Phys Proc Suppl175–176: 221–226

    Google Scholar 

  • Keilhauer B, Blümer J, Engel R, Klages HO (2006) Impact of varying atmospheric profiles on extensive air shower observation: fluorescence light emission and energy reconstruction. Astropart Phys 25:259–268

    Article  ADS  Google Scholar 

  • Keilhauer B, Blümer J, Engel R, Klages HO, Risse M (2004) Impact of varying atmospheric profiles on extensive air shower observation: Atmospheric density and primary mass reconstruction. Astropart Phys 22:249–261

    Article  ADS  Google Scholar 

  • Kieda DB, Swordy SP, Wakely SP (2001) A high resolution method for measuring cosmic ray composition beyond 10-TeV. Astropart Phys 15:287–303

    Article  ADS  Google Scholar 

  • Klein S (1999) Suppression of bremsstrahlung and pair production due to environmental factors. Rev Mod Phys 71:1501–1538

    Article  ADS  Google Scholar 

  • Knapp J, Heck D, Schatz G (1996) Comparison of hadronic interaction models used in air shower simulations and of their influence on shower development and obsevables, in Wissenschaftliche Berichte FZKA 5828, Forschungszentrum Karlsruhe

    Google Scholar 

  • Knapp J, Heck D, Sciutto SJ, Dova MT, Risse M (2003) Extensive air shower simulations at the highest energies. Astropart Phys 19:77–99

    Article  ADS  Google Scholar 

  • Kolhörster W, Matthes I, Weber E (1938) Gekopplete Höhenstrahlen. Naturwiss 26:576

    Article  ADS  Google Scholar 

  • Korosteleva E, Kuzmichev L, Prosin V (EAS-TOP Collab.) (2003) Lateral distribution function of EAS Cherenkov light: experiment QUEST and CORSIKA simulation. In: Proceedings of 28th International Cosmic Ray Conference, Tsukuba, pp 89–92

    Google Scholar 

  • Kotera K, Olinto A (2011) The astrophysics of ultrahigh energy cosmic rays, arXiv:1101.4256 [astro-ph.HE]

    Google Scholar 

  • Kuempel D, Kampert KH, Risse M (2008) Geometry reconstruction of fluorescence detectors revisited. Astropart Phys 30:167–174

    Article  ADS  Google Scholar 

  • Kulikov GV, Khristiansen GB (1958) On the size spectrum of extensive air showers. J Exp Theor Phys 35:441–444

    Google Scholar 

  • Lafebre S, Engel R, Falcke H, Hörandel J, Huege T, Kuijpers J, Ulrich R (2009) Universality of electron-positron distributions in extensive air showers. Astropart Phys 31:243–254

    Article  ADS  Google Scholar 

  • Landau LD, Pomeranchuk I (1953) Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies. Dokl Akad Nauk Ser Fiz 92:535–536

    MATH  Google Scholar 

  • Letessier-Selvon A, Stanev T (2011) Ultrahigh energy cosmic rays, to appear in Rev. Mod. Phys.

    Google Scholar 

  • Linsley J (1963) Evidence for a primary cosmic-ray particle with energy 1020 eV. Phys Rev Lett 10:146–148

    Article  ADS  Google Scholar 

  • Linsley J (1998) Search for the end of the cosmic ray energy spectrum. AIP Conf Proc 433: 1–21

    ADS  Google Scholar 

  • Linsley J, Watson AA (1981) Validity of scaling to 1020eV and high-energy cosmic ray composition. Phys Rev Lett 46:459–463

    Article  ADS  Google Scholar 

  • Lipari P (2008) The concepts of “age” and “universality” in cosmic ray showers. Phys Rev 79:063001

    Google Scholar 

  • Ludwig M, Huege T (2011) REAS3: Monte Carlo simulations of radio emission from cosmic ray air showers using an “end-point” formalism. Astropart Phys 34:438–446

    Article  ADS  Google Scholar 

  • Matthews J (2005) A Heitler model of extensive air showers. Astropart Phys 22:387–397

    Article  ADS  Google Scholar 

  • Medina MC et al. (2006) Enhancing the Pierre Auger observatory to the 1017eV to 1018.5eV range: capabilities of an infill surface array. Nucl Instrum Meth A566:302–311

    ADS  Google Scholar 

  • Meurer C, Blümer J, Engel R, Haungs A, Roth M (2006) Muon production in extensive air showers and its relation to hadronic interactions. Czech J Phys 56:A211

    Article  Google Scholar 

  • Migdal AB (1956) Bremsstrahlung and pair production in condensed media at high-energies. Phys Rev 103:1811–1820

    Article  MATH  ADS  Google Scholar 

  • Mohanty G et al. (1998) Measurement of TeV gamma-ray spectra with the Cherenkov imaging technique. Astropart Phys 9:15–43

    Article  ADS  Google Scholar 

  • Molière GZ (1948) Theorie der Streuung schneller geladener Teilchen. II. Mehrfach-und Vielfachstreuung, Z. Naturforsch 3a, 78

    Google Scholar 

  • Moura CA, Guzzo MM, Simulation of double-bang event in the atmosphere, hep-ph/0703145

    Google Scholar 

  • Nagano M (2009) Search for the end of the energy spectrum of primary cosmic rays. New J Phys 11:065012

    Article  Google Scholar 

  • Nagano M, Watson AA (2000) Observations and implications of the ultrahigh-energy cosmic rays. Rev Mod Phys 72:689–732

    Article  ADS  Google Scholar 

  • National Aeronautics and Space Administration (NASA) (1976) U.S. Standard Atmosphere 1976, NASA-TM-X-74335

    Google Scholar 

  • Nerling F, Blümer J, Engel R, Risse M (2006) Universality of electron distributions in high-energy air showers: description of Cherenkov light production. Astropart Phys 24:421–437

    Article  ADS  Google Scholar 

  • Newton D, Knapp J, Watson AA (2007) The optimum distance at which to determine the size of a giant air shower. Astropart Phys 26:414–419

    Article  ADS  Google Scholar 

  • Nishimura J (1965) Therory of cascade showers. Handbuch der Physik 46/2:1–113

    Google Scholar 

  • Pierog T et al. (2005) Dependence of the longitudinal shower profile on the characteristics of hadronic multiparticle production. In: Proceedings of 29th International Cosmic Ray Conference, vol 7. Pune, p 103

    Google Scholar 

  • Pierog T, Werner K (2009) EPOS model and ultra high energy cosmic rays. Nucl Phys Proc Suppl 196:102–105

    Article  ADS  Google Scholar 

  • Randall L, Sundrum R (1999) A large mass hierarchy from a small extra dimension. Phys Rev Lett 83:3370–3373

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Risse M, Homola P (2007) Search for ultra-high energy photons using air showers. Mod Phys Lett A22:749–766

    ADS  Google Scholar 

  • Rossi B, Greisen K (1941) Cosmic-ray theory. Rev Mod Phys 13:240–309

    Article  ADS  Google Scholar 

  • Santangelo A, Petrolini A (2009) Observing ultra-high-energy cosmic particles from space: S-EUSO, the super-extreme universe space observatory mission. New J Phys 11: 065010

    Article  Google Scholar 

  • Scholten O, Werner K, Rusydi F (2008) A macroscopic description of coherent geo-magnetic radiation from cosmic ray air showers. Astropart Phys 29:94–103

    Article  ADS  Google Scholar 

  • Sciutto SJ (1999) AIRES: A system for air shower simulations (version 2.2.0), astroph/9911331

    Google Scholar 

  • Sciutto SJ (2010) The AIRES system for air shower simulations. An update, astro-ph/0106044

    Google Scholar 

  • Sinnis G (HAWC and Milagro Collab.) (2010) Water Cherenkov technology in gamma-ray astrophysics. Nucl Instrum Meth A623:410–412

    Google Scholar 

  • Stanev T (2003) High energy cosmic rays. Springer, Berlin

    Google Scholar 

  • Stanev T et al. (IceCube Collab.) (2009) Status, performance, and first results of the IceTop array. Nucl Phys Proc Suppl 196:159–164

    Google Scholar 

  • Stanev T, Vankov C, Streitmatter RE, Ellsworth RW, Bowen T (1982) Development of ultrahigh-energy electromagnetic cascades in water and lead including the Landau-Pomeranchuk-Migdal effect. Phys Rev D25:1291–1304

    ADS  Google Scholar 

  • Stanev T, Vankov HP (1997) The nature of the highest energy cosmic rays. Phys Rev D55:1365–1371

    ADS  Google Scholar 

  • Sternheimer RM, Berger MJ, Seltzer SM (1984) Density effect for the ionization loss of charged particles in various substances. At Data Nucl Data Tables 30:261–271

    Article  ADS  Google Scholar 

  • Tameda Y, Taketa A, Smith JD, Tanaka M, Fukushima M et al. (2009) Trigger electronics of the new fluorescence detectors of the telescope array experiment. Nucl Instrum Meth A609: 227–234

    ADS  Google Scholar 

  • Tanaka H et al. (GRAPES-3 Collab.) (2008) Study on nuclear composition of cosmic rays around the knee utilizing muon multiplicity with GRAPES-3 experiment at Ooty. Nucl Phys Proc Suppl 175–176:280–285

    Google Scholar 

  • Tokuno H et al. (TA Collab.) (2010) The telescope array experiment: status and prospects. AIP Conf Proc 1238:365–368

    Google Scholar 

  • Unger M, Dawson BR, Engel R, Schüssler F, Ulrich R (2008) Reconstruction of longitudinal profiles of ultra-high energy cosmic ray showers from fluorescence and Cherenkov light measurements. Nucl Instrum Meth A588:433–441

    ADS  Google Scholar 

  • Vankov HP, Inoue N, Shinozaki K (2003) Ultra-high energy gamma rays in geomagnetic field and atmosphere. Phys Rev D67:043002

    Article  ADS  Google Scholar 

  • Walker R, Watson AA (1982) Measurement of the fluctuations in the depth of maximum of showers produced by primary particles of energy greater than 1 :5 ×1017eV. J Phys G8:1131–1140

    ADS  Google Scholar 

  • Weekes T et al. (VERITAS Collab.) (2002) VERITAS: the very energetic radiation imaging telescope array system. Astropart Phys 17:221–243

    Google Scholar 

  • Weekes T et al. (VERITAS Collab.) (2010) VERITAS: status summary 2009. Int J Mod Phys D19: 1003–1012

    Google Scholar 

  • Werner K, Liu FM, Pierog T (2006) Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron gold collisions at RHIC. Phys Rev C74:044902

    Article  ADS  Google Scholar 

  • Werner K, Scholten O (2008) Macroscopic treatment of radio emission from cosmic ray air showers based on shower simulations. Astropart Phys 29:393–411

    Article  ADS  Google Scholar 

  • Zas E (2005) Neutrino detection with inclined air showers. New J Phys 7:130

    Article  Google Scholar 

  • Zatsepin GT, Kuzmin VA (1966) Upper limit of the spectrum of cosmic rays. J Exp Theor Phys Lett 4:78

    Google Scholar 

Further Reading

  • Aharonian FA (2004) Very high energy cosmic gamma radiation: a crucial window on the extreme universe. World Scientific, Singapore

    Book  Google Scholar 

  • Blümer J, Engler J, Hörandel JR (2011) Detectors for astroparticle physics. Springer Monographs, Berlin

    Google Scholar 

  • Gaisser TK (1990) Cosmic rays and particle physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Grieder PKF (2001) Cosmic rays at Earth: researcher’s reference, manual and data book. Elsevier, Amsterdam

    Google Scholar 

  • Grieder PKF (2010) Extensive air showers: high energy phenomena and astrophysical aspects – a tutorial, reference manual and data book. Springer, Berlin

    MATH  Google Scholar 

  • Stanev T (2010) High energy cosmic rays, 2nd edn. Springer Praxis, Berlin

    Book  Google Scholar 

Download references

Acknowledgments

The author thanks his colleagues from the Pierre Auger, KASCADE-Grande, and LOPES Collaborations with whom he has worked on various subjects covered in this contribution. He is also grateful to Claus Grupen and Andreas Haungs for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Engel, R. (2012). Indirect Detection of Cosmic Rays. In: Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13271-1_24

Download citation

Publish with us

Policies and ethics