Skip to main content

Quantitative Remote Sensing Inversion in Earth Science: Theory and NumericalTreatment

  • Reference work entry

Abstract

Quantitative remote sensing is an appropriate way to estimate structural parameters and spectral component signatures of Earth surface cover type. Since the real physical system that couples the atmosphere, water and the land surface is very complicated and should be a continuous process, sometimes it requires a comprehensive set of parameters to describe such a system, so any practical physical model can only be approximated by a mathematical model which includes only a limited number of the most important parameters that capture the major variation of the real system. The pivot problem for quantitative remote sensing is the inversion. Inverse problems are typically ill-posed. The ill-posed nature is characterized by: (C1) the solution may not exist; (C2) the dimension of the solution space may be infinite; (C3) the solution is not continuous with variations of the observed signals. These issues exist nearly for all inverse problems in geoscience and quantitative remote sensing. For example, when the observation system is band-limited or sampling is poor, i.e., there are too few observations, or directions are poor located, the inversion process would be underdetermined, which leads to the large condition number of the normalized system and the significant noise propagation. Hence (C2) and (C3) would be the highlight difficulties for quantitative remote sensing inversion. This chapter will address the theory and methods from the viewpoint that the quantitative remote sensing inverse problems can be represented by kernel-based operator equations and solved by coupling regularization and optimization methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   679.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ångström A (1929) On the atmospheric transmission of sun radiation and on dust in the air. Geogr Ann 11:156–166

    Article  Google Scholar 

  • Barzilai J, Borwein J (1988) Two-point step size gradient methods. IMA J Numer Anal 8:141–148

    Article  MATH  MathSciNet  Google Scholar 

  • Bockmann C (2001) Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data in the retrieval of aerosol size distributions. Appl Opt 40:1329–1342

    Article  Google Scholar 

  • Bockmann C, Kirsche A (2006) Iterative regularization method for lidar remote sensing. Comput Phys Commun 174:607–615

    Article  Google Scholar 

  • Bohren GF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  • Brakhage H (1987) On ill-posed problems and the method of conjugate gradients. In: Engl HW, Groetsch CW (eds) Inverse and ill-posed problems, Academic, Boston, pp 165–175

    Google Scholar 

  • Camps-Valls G (2008) New machine-learning paradigm provides advantages for remote sensing. SPIE Newsroom, DOI: 10.1117/2.1200806. 1100

    MATH  Google Scholar 

  • Davies CN (1974) Size distribution of atmospheric aerosol. J Aerosol Sci 5:293–300

    Article  Google Scholar 

  • Dennis JE, Schnable RB (1983) Numerical methods for unconstrained optimization and nonlinear equations. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Fletcher R (2001) On the Barzilai–Borwein method. Numerical Analysis Report NA/207

    Google Scholar 

  • Houghton JT, Meira Filho LG, Callander BA, Harris N, Kattenberg A, Maskell K (1966) Climate change 1995. Published for the Intergovernmental Panel on Climate Change, Cambridge University Press

    Google Scholar 

  • Junge CE (1955) The size distribution and aging of natural aerosols as determined from electrical and optical data on the atmosphere. J Meteor 12:13–25

    Google Scholar 

  • Kelley CT (1999) Iterative methods for optimization. SIAM, Philadelphia

    MATH  Google Scholar 

  • King MD, Byrne DM, Herman BM, Reagan JA (1978) Aerosol size distributions obtained by inversion of spectral optical depth measurements. J Aerosol Sci 35:2153–2167

    Google Scholar 

  • Li X, Wang J, Hu B, Strahler AH (1998) On utilization of a priori knowledge in inversion of remote sensing models. Sci China D 41:580–585

    Article  Google Scholar 

  • Li X, Wang J, Strahler AH (1999) Apparent reciprocal failure in BRDF of structured surfaces. Prog Nat Sci 9:747–750

    Google Scholar 

  • Li X, Gao F, Liu Q, Wang JD, Strahler AH (2000) Validation of a new GO kernel and inversion of land surface albedo by kernel-driven model (1). J Remote Sens 4:1–7

    MATH  Google Scholar 

  • Li X, Gao F, Wang J, Strahler AH (2001) A priori knowledge accumulation and its application to linear BRDF model inversion. J Geophys Res 106:11925–11935

    Article  Google Scholar 

  • Mccartney GJ (1976) Optics of atmosphere. Wiley, New York

    Google Scholar 

  • Nguyen T, Cox K (1989) A method for the determination of aerosol particle distributions from light extinction data. In: Abstracts of the american association for aerosol research annual meeting, American Association of Aerosol Research, Cincinnati, pp 330–330

    Google Scholar 

  • Nocedal J (1980) Updating quasi-Newton matrices with limited storage. Math Comput 95:339–353

    MathSciNet  Google Scholar 

  • Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9:84–97

    MATH  MathSciNet  Google Scholar 

  • Pokrovsky O, Roujean JL (2002) Land surface albedo retrieval via kernel-based BRDF modeling: I. Statistical inversion method and model comparison. Remote Sens Environ 84:100–119

    Article  Google Scholar 

  • Pokrovsky OM, Roujean JL (2003) Land surface albedo retrieval via kernel-based BRDF modeling: II. An optimal design scheme for the angular sampling. Remote Sens. Environ. 84:120–142

    Article  Google Scholar 

  • Pokrovsky IO, Pokrovsky OM, Roujean JL (2003) Development of an operational procedure to estimate surface albedo from the SEVIRI/MSG observing system by using POLDER BRDF measurements: II. Comparison of several inversion techniques and uncertainty in albedo estimates. Remote Sens Environ 87:215–242

    Article  Google Scholar 

  • Privette JL, Eck TF, Deering DW (1997) Estimating spectral albedo and nadir reflectance through inversion of simple bidirectional reflectance distribution models with AVHRR/MODIS-like data. J Geophys Res 102:29529–29542

    Article  Google Scholar 

  • Roujean JL, Leroy M, Deschamps PY (1992) A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J Geophys Res 97:20455–20468

    Google Scholar 

  • Strahler AH, Li XW, Liang S, Muller J-P, Barnsley MJ, Lewis P (1994) MODIS BRDF/albedo product: Algorithm technical basis document. NASA EOS-MODIS Doc. 2.1

    Google Scholar 

  • Strahler AH, Lucht W, Schaaf CB, Tsang T, Gao F, Li X, Muller JP, Lewis P, Barnsley MJ (1999) MODIS BRDF/albedo product: Algorithm theoretical basis document. NASA EOS-MODIS Doc. 5.0

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Wiley, New York

    MATH  Google Scholar 

  • Tikhonov AN, Goncharsky AV, Stepanov VV, Yagola AG (1995) Numerical methods for the solution of ill-posed problems. Kluwer, Dordrecht

    MATH  Google Scholar 

  • Twomey S (1975) Comparison of constrained linear inversion and an iterative nonlinear algorithm applied to the indirect estimation of particle size distributions. J Comput Phys 18:188–200

    Article  Google Scholar 

  • Twomey S (1977) Atmospheric aerosols. Elsevier Sci. Publ. Company, Amsterdam

    Google Scholar 

  • Verstraete MM, Pinty B, Myneny RB (1996) Potential and limitations of information extraction on the terrestrial biosphere from satellite remote sensing. Remote Sens Environ 58:201–214

    Article  Google Scholar 

  • Voutilainenand A, Kaipio JP (2000) Statistical inversion of aerosol size distribution data. J Aerosol Sci 31:767–768

    Article  Google Scholar 

  • Wagner W, Ullrich A, Ducic V, Melzer T, Studnicka N (2006) Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J Photogram Remote Sens 60:100–112

    Article  Google Scholar 

  • Wang YF (2007) Computational methods for inverse problems and their applications. Higher Education Press, Beijing

    Google Scholar 

  • Wang YF (2008) An efficient gradient method for maximum entropy regularizing retrieval of atmospheric aerosol particle size distribution function. J Aerosol Sci 39:305–322

    Article  Google Scholar 

  • Wang YF, Xiao TY (2001) Fast realization algorithms for determining regularization parameters in linear inverse problems. Inverse Probl 17: 281–291

    Article  MATH  MathSciNet  Google Scholar 

  • Wang YF, Yuan YX (2002) On the regularity of a trust region-CG algorithm for nonlinear ill-posed inverse problems. In: Sunada T, Sy PW, Yang L (eds) Proceedings of the third Asian mathematical conference, World Scientific, Singapore, pp 562–580

    Chapter  Google Scholar 

  • Wang YF, Yuan YX (2003) A trust region algorithm for solving distributed parameter identification problem. J Comput Math 21:759–772

    MATH  MathSciNet  Google Scholar 

  • Wang YF, Yuan YX (2005) Convergence and regularity of trust region methods for nonlinear ill-posed inverse problems. Inverse Probl 21:821–838

    Article  MATH  MathSciNet  Google Scholar 

  • Wang YF, Ma SQ (2007) Projected Barzilai-Borwein methods for large scale nonnegative image restorations. Inverse Probl Sci Eng 15:559–583

    Article  MATH  MathSciNet  Google Scholar 

  • Wang YF, Ma SQ (2009) A fast subspace method for image deblurring. Appl Math Comput 215:2359–2377

    Article  MATH  MathSciNet  Google Scholar 

  • Wang YF, Yang CC (2008) A regularizing active set method for retrieval of atmospheric aerosol particle size distribution function. J Opt Soc Am A 25:348–356

    Article  Google Scholar 

  • Wang YF, Li XW, Ma SQ, Yang H, Nashed Z, Guan YN (2005) BRDF model inversion of multiangular remote sensing: ill-posedness and interior point solution method. In: Proceedings of the 9th international symposium on physical measurements and signature in remote sensing (ISPMSRS) vol XXXVI, pp 328–330

    Google Scholar 

  • Wang YF, Fan SF, Feng X, Yan GJ, Guan YN (2006a) Regularized inversion method for retrieval of aerosol particle size distribution function in W 1, 2 space. Appl Opt 45:7456–7467

    Article  Google Scholar 

  • Wang YF, Wen Z, Nashed Z, Sun Q (2006b) Direct fast method for time-limited signal reconstruction. Appl Opt 45:3111–3126

    Article  Google Scholar 

  • Wang YF, Li XW, Nashed Z, Zhao F, Yang H, Guan YN, Zhang H (2007a) Regularized kernel-based BRDF model inversion method for ill-posed land surface parameter retrieval. Remote Sens Environ 111:36–50

    Article  Google Scholar 

  • Wang YF, Fan SF, Feng X (2007b) Retrieval of the aerosol particle size distribution function by incorporating a priori information. J Aerosol Sci 38:885–901

    Article  Google Scholar 

  • Wang YF, Yang CC, Li XW (2008) A regularizing kernel-based BRDF model inversion method for ill-posed land surface parameter retrieval using smoothness constraint. J Geophys Res 113:D13101

    Article  Google Scholar 

  • Wang YF, Zhang JZ, Roncat A, Künzer C, Wagner W (2009a) Regularizing method for the determination of the backscatter cross-section in Lidar data. J Opt Soc Am A 26:1071–1079

    Article  Google Scholar 

  • Wang YF, Cao JJ, Yuan YX, Yang CC, Xiu NH (2009b) Regularizing active set method for nonnegatively constrained ill-posed multichannel image restoration problem. Appl Opt 48:1389–1401

    Article  Google Scholar 

  • Wang YF, Yang CC, Li XW (2009c) Kernel-based quantitative remote sensing inversion. In: Camps-Valls G, Bruzzone L (eds) Kernel methods for remote sensing data analysis. Wiley, New York

    Google Scholar 

  • Wang YF, Ma SQ, Yang H, Wang JD, Li XW (2009d) On the effective inversion by imposing a priori information for retrieval of land surface parameters. Sci China D 39:360–369

    Google Scholar 

  • Wanner W, Li X, Strahler AH (1995) On the derivation of kernels for kernel-driven models of bidirectional reflectance. J Geophys Res 100:21077–21090

    Article  Google Scholar 

  • Xiao TY, Yu SG, Wang YF (2003) Numerical methods for the solution of inverse problems. Science Press, Beijing

    Google Scholar 

  • Ye YY (1997) Interior point algorithms: theory and analysis. Wiley, Chichester

    MATH  Google Scholar 

  • Yuan YX (1994) Nonlinear programming: trust region algorithms. In: Xiao ST, Wu F (eds) Proceedings of Chinese SIAM annual meeting, Tsinghua University Press, Beijing, pp 83–97

    Google Scholar 

  • Yuan YX (1993) Numerical methods for nonlinear programming. Shanghai Science and Technology Publication, Shanghai

    Google Scholar 

  • Yuan YX (2001) A scaled central path for linear programming. J Comput Math 19:35–40

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is supported by National “973” Key Basic Research Developments Program of China under grant numbers 2007CB714400, National Natural Science Foundation of China (NSFC) under grant numbers 10871191, 40974075 and Knowledge Innovation Programs of Chinese Academy of Sciences KZCX2-YW-QN107.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Wang, Y. (2010). Quantitative Remote Sensing Inversion in Earth Science: Theory and NumericalTreatment. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01546-5_26

Download citation

Publish with us

Policies and ethics