Skip to main content

Multiscale Modeling of the Geomagnetic Field and Ionospheric Currents

  • Reference work entry
  • 2856 Accesses

Abstract

This chapter reports on the recent application of multiscale techniques to the modeling of geomagnetic problems. Two approaches are presented: a spherical harmonics-oriented one, using frequency packages, and a spatially oriented one, using regularizations of the single layer kernel and Green’s function with respect to the Beltrami operator. As an example both approaches are applied to the separation of the magnetic field with respect to interior and exterior sources and the reconstruction of radial ionospheric currents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   679.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amit H, Olsen P (2004) Helical core flow from geomagnetic secular variation. Phys Earth Planet Inter 147:125

    Article  Google Scholar 

  • Backus GE (1986) Poloidal and toroidal fields in geomagnetic field modeling. Rev Geophys 24:75–109

    Article  MathSciNet  Google Scholar 

  • Backus GE, Parker R, Constable C (1996) Foundations of geomagnetism. Cambridge University Press, Cambridge

    Google Scholar 

  • Bayer M, Freeden W, Maier T (2001) A vector wavelet approach to iono- and magnetospheric geomagnetic satellite data. J Atm Sol-Ter Phys 63:581–597

    Article  Google Scholar 

  • Birkeland K (1908) The Norwegian aurora polaris expedition 1902–1903, vol 1. H. Aschehoug, Oslo

    Google Scholar 

  • Chambodut A, Panet I, Mandea M, Diament M, Holschneider M (2005) Wavelet frames: an alternative to spherical harmonic representation of potential fields. J Geophys Int 163:875–899

    Article  Google Scholar 

  • Dahlke S, Dahmen W, Schmitt W, Weinreich I (1995) Multiresolution analysis and wavelets on S 2 and S 3. Numer Funct Anal Optim 16:19–41

    Article  MATH  MathSciNet  Google Scholar 

  • Driscoll J, Healy D (1994) Computating Fourier transforms and convolutions on the 2-sphere. Adv Appl Math 15:202–250

    Article  MATH  MathSciNet  Google Scholar 

  • Edmonds AR (1957) Angular momentum in quantum mechanics. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Fehlinger T, Freeden W, Gramsch S, Mayer C, Michel D, Schreiner M (2007). Local modelling of sea surface topography from (geostrophic) ocean flow. ZAMM 87:775–791

    Article  MATH  MathSciNet  Google Scholar 

  • Fehlinger T, Freeden W, Mayer C, Schreiner M (2008) On the local multiscale determination of the earths disturbing potential from discrete deflections of the vertical. Comput Geosci 12:473–490

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden W (1998) The uncertainty principle and its role in physical geodesy. In: Freeden W (ed) Progress in geodetic science. Shaker, Aachen

    Google Scholar 

  • Freeden W, Gerhards C (2010) Poloidal–toroidal modeling by locally supported vector wavelets. Math Geosc, doi:10.1007/s11004-009-9262-0

    MathSciNet  Google Scholar 

  • Freeden W, Mayer C (2008) Wavelets generated by layer potentials. App Comp Harm Ana 14:195–237

    Article  MathSciNet  Google Scholar 

  • Freeden W, Schreiner M (1995) Non-orthogonal expansion on the sphere. Math Meth Appl Sci 18:83–120

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden W, Schreiner M (2010) Special functions in mathematical geosciences - an attempt of categorization. In: Freeden W, Nashed Z, Sonar T (eds), Handbook of geomathematics. Springer, Heidelberg

    Chapter  Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical (geo-) sciences. Springer, Heidelberg

    Google Scholar 

  • Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere – with applications to geosciences. Oxford University Press, New York

    Google Scholar 

  • Friis-Christensen E, Lühr H, Hulot G (2006) Swarm: A constellation to study the Earth’s magnetic field. Earth Planets Space 58:351–358

    Google Scholar 

  • Gauss CF (1839) Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838. Göttinger Magnetischer Verein, Leipzig

    Google Scholar 

  • Gerlich G (1972) Magnetfeldbeschreibung mit Verallgemeinerten Poloidalen und Toroidalen Skalaren. Z Naturforsch 8:1167–1172

    MathSciNet  Google Scholar 

  • Haagmanns R, Kern M, Plank G (2008) Swarm - the earth’s magnetic field and environment explorers. RSSD Seminar ESTEC.

    Google Scholar 

  • Haines GV (1985) Spherical cap harmonic analysis. J Geophys Res 90:2583–2591

    Article  Google Scholar 

  • Holschneider M (1996) Continuous wavelet transforms on the sphere. J Math Phys 37:4156–4165

    Article  MATH  MathSciNet  Google Scholar 

  • Holschneider M, Chambodut A, Mandea M (2003) From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys Earth Planet Inter 135:107–124

    Article  Google Scholar 

  • Hulot G, Sabaka TJ, Olsen N (2007) The present field. In: Kono M (ed), Treatise on Geophysics, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Jackson JD (1975) Classical electrodynamics. Wiley, New York

    MATH  Google Scholar 

  • Jackson A (1997) Time-dependency of tangentially geostrophic core surface motions. Earth Planet Inter 103:293–311

    Article  Google Scholar 

  • Kuvshinov A, Sabaka TJ, Olsen N (2006) 3-D electromagnetic induction studies using the swarm constellation: mapping conductivity anomalies in the Earth’s mantle. Earth Planets Space 58:417–427

    Google Scholar 

  • Langel RA (1987) The main field. In: Jacobs JA (ed), Geomagnetism, vol 1. Academic, London

    Google Scholar 

  • Langel RA, Hinze WJ (1998) The magnetic field of the Earth’s lithosphere: the satellite perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lowes FJ (1966) Mean square values on sphere of spherical harmonic fields. J Geophys Res 71:2179

    Google Scholar 

  • Lühr H, Korte M, Mandea M (2009) The recent magnetic field. In: Glassmeier K-H, Soffel H, Negendank JW (eds), Geomagnetic variations. Springer, Berlin

    Google Scholar 

  • Maier T (2005) Wavelet-Mie-representation for solenoidal vector fields with applications to ionospheric geomagnetic data. SIAM J Appl Math 65:1888–1912

    Article  MATH  MathSciNet  Google Scholar 

  • Maier T, Mayer C (2003) Multiscale downward continuation of the crustal field from CHMAP FGM data. In: First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, Berlin

    Google Scholar 

  • Mauersberger P (1956) Das Mittel der Energiedichte des Geomagnetischen Hauptfeldes an der Erdoberfläche und Seine Sekuläre Änderung. Gerl Beitr Geophys 65:207–215

    Google Scholar 

  • Mayer C (2003) Wavelet modeling of ionospheric currents and induced magnetic fields from satellite data. PhD Thesis, University of Kaiserslautern

    Google Scholar 

  • Mayer C, Maier T (2006) Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J Int 167: 1188–1203

    Article  Google Scholar 

  • Michel V (2006) Fast approximation on the 2-sphere by optimally localized approximate identities. Schriften zur Funktionalanalysis und Geomathematik 29, University of Kaiser-slautern

    Google Scholar 

  • Moehring S (2010) Multiscale modeling of ionospheric current systems. Diploma Thesis, University of Kaiserslautern.

    Google Scholar 

  • Olsen N (1997) Ionospheric F-region currents at middle and low latitudes estimated from MAGSAT data. J Geophys Res 102:4563–4576

    Article  Google Scholar 

  • Olsen N (1999) Induction studies with satellite data. Surv Geophys 20:309–340

    Article  Google Scholar 

  • Olsen N, Glassmeier K-H, Jia X (2009) Separation of the magnetic field into external and internal parts. Space Sci Rev, doi:10.1007/s11214-009-9563-0

    Google Scholar 

  • Pais MA, Oliviera O, Nogueira F (2004) Nonuniqueness of inverted core-mantle boundary flows and deviations from tangential geostrophy. J Geophys Res 109:doi:10.1029/2004JB003012

    Google Scholar 

  • Sabaka T, Hulot G, Olsen N (2010) Mathematical properties relevant to geomagnetic field modeling. In: Freeden W, Nashed Z, Sonar T (eds), Handbook of geomathematics. Springer, Heidelberg

    Google Scholar 

  • Schröder P, Swelden W (1995) Spherical wavelets on the sphere. In: Approximation theory, vol VIII. World Scientific, Singapore

    Google Scholar 

  • Thebault E, Schott JJ, Mandea M (2006) Revised spherical cap harmonics analysis (R-SCHA): validation and properties. J Geophys Res 111:doi:10.1029/2005JB003836

    Google Scholar 

  • Tsyganenko NA, Sitnov MI (2007) Magnetospheric configurations from a high-resolution data-based magnetic field model. J Geophys Res 112:doi:10.1029/2007JA012260

    Google Scholar 

  • Untied J (1967) A model of the equatorial electrojet involving meridional currents. J Geophys Res 72:5799–5810

    Article  Google Scholar 

  • Zatman S, Bloxham J (1997) Torsional oscillations and the magnetic field within the Earth’s core. Nature 388:760763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Gerhards, C. (2010). Multiscale Modeling of the Geomagnetic Field and Ionospheric Currents. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds) Handbook of Geomathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01546-5_18

Download citation

Publish with us

Policies and ethics