Advertisement

Fatigue Load Conditions

  • Ian A. AshcroftEmail author

Abstract

Fatigue involves the failure of materials under cyclic loading, where the maximum load can be significantly lower than that required to cause static failure. Polymeric adhesives, like most materials, are susceptible to fatigue failure, and, hence, fatigue should be accounted for when designing bonded structures subjected to cyclic loading. Adhesive joints have potentially good fatigue resistance compared with other joining methods; however, they are also susceptible to accelerated fatigue failure due to the actions of environmental ageing or viscoelastic creep. In this chapter, the effect of the environment and various fatigue loading parameters on the fatigue behavior of adhesively bonded joints is discussed before describing the main methods of characterizing and predicting fatigue. Traditionally, fatigue behavior has been characterized through the use of experimentally derived stress-life plots, and fracture mechanics–based progressive crack growth methods have also been widely discussed. In more recent years, damage mechanics–based progressive modelling methods have been proposed that have the advantage of predicting both initiation and crack progression phases of fatigue and have also been shown to be readily adapted to the prediction of variable amplitude fatigue and combined fatigue-environmental ageing. The chapter finishes with descriptions of two special cases of fatigue: creep-fatigue and impact fatigue, which have been shown to be extremely detrimental to the fatigue life of bonded joints under certain conditions.

Keywords

Fatigue fatigue initiation fatigue crack growth cyclic loading fracture mechanics damage mechanics strength wearout back-face strain 

References

  1. Abdel Wahab MM, Ashcroft IA, Crocombe AD, Hughes DJ, Shaw SJ (2001a) Compos Part A 32:59CrossRefGoogle Scholar
  2. Abdel Wahab MM, Ashcroft IA, Crocombe AD, Hughes DJ, Shaw SJ (2001b) J Adhes Sci Technol 15:763CrossRefGoogle Scholar
  3. Abdel Wahab MM, Ashcroft IA, Crocombe AD, Smith PA (2004) Compos Part A 35:213CrossRefGoogle Scholar
  4. Abdel Wahab MM, Hilmy I, Ashcroft IA, Crocombe AD (2010a) J Adhes Sci Technol 24:305CrossRefGoogle Scholar
  5. Abdel Wahab MM, Hilmy I, Ashcroft IA, Crocombe AD (2010b) J Adhes Sci Technol 24:325CrossRefGoogle Scholar
  6. Al-Ghamdi AH, Ashcroft IA, Crocombe AD, Abdel Wahab MM (2003) J Adhes 79:1161CrossRefGoogle Scholar
  7. Al-Ghamdi AH, Ashcroft IA, Crocombe AD, Abdel-Wahab MM (2004) Proceedings of the 7th international conference on structural adhesives in engineering. IOM Communications, London, pp 22–25Google Scholar
  8. Ashcroft IA (2004) J Strain Anal 39:707CrossRefGoogle Scholar
  9. Ashcroft IA, Shaw SJ (2002) Int J Adhes Adhes 22:151CrossRefGoogle Scholar
  10. Ashcroft IA, Abdel Wahab MM, Crocombe AD, Hughes DJ, Shaw SJ (2001a) Compos Part A 32:45CrossRefGoogle Scholar
  11. Ashcroft IA, Abdel-Wahab MM, Crocombe AD, Hughes DJ, Shaw SJ (2001b) J Adhes 75:61CrossRefGoogle Scholar
  12. Ashcroft IA, Abdel-Wahab MM, Crocombe AD (2003) Mech Adv Mater Struct 10:227CrossRefGoogle Scholar
  13. Ashcroft IA, Casas-Rodriguez JP, Silberschmidt VV (2010) J Adhes 86:522CrossRefGoogle Scholar
  14. Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2007) J Sound Vib 308:467CrossRefGoogle Scholar
  15. Casas-Rodriguez JP, Ashcroft IA, Silberschmidt VV (2008) Comp Sci Technol 68:2663CrossRefGoogle Scholar
  16. Coffin LF (1954) Trans Am Soc Mech Eng 76:931Google Scholar
  17. Crocombe AD, Richardson G (1999) Int J Adhes Adhes 19:19CrossRefGoogle Scholar
  18. Dowling NE (1999) Mechanical behaviour of materials. Prentice Hall, New Jersey, pp 390–392Google Scholar
  19. Erpolat S, Ashcroft IA, Crocombe AD, Abdel Wahab MM (2004a) Int J Fatigue 26:1189CrossRefGoogle Scholar
  20. Erpolat S, Ashcroft IA, Crocombe AD, Abdel Wahab MM (2004b) Comp A 35:1175CrossRefGoogle Scholar
  21. Farrow IR (1989) Damage accumulation and degradation of composite laminates under aircraft service loading: Assessment and prediction, Volumes I & Volumes II. PhD thesis, Cranfield Institute of TechnologyGoogle Scholar
  22. Gomatam R, Sancaktar E (2006) J Adhes Sci Technol 20:69CrossRefGoogle Scholar
  23. Griffith AA (1921) Phil Trans R Soc A221:163Google Scholar
  24. Irwin GR (1958) Fracture. In: Flugge S (ed) Handbuch der physic VI. Springer, Berlin, pp 551–590Google Scholar
  25. Khoramishad H, Crocombe AD, Katnam K, Ashcroft IA (2010a) Int J Fatigue 32:1146CrossRefGoogle Scholar
  26. Khoramishad H, Crocombe AD, Katnam K, Ashcroft IA (2010b) Int J Adhes Adhes 32:1278Google Scholar
  27. Landes JD, Begley JA (1976) Mechanics of crack growth, ASTM STP 590. American Society for Testing and Materials, Philadelphia, pp 128–148CrossRefGoogle Scholar
  28. Levebvre DR, Dillard DA (1999) J Adhes 70:119CrossRefGoogle Scholar
  29. Little MSG (1999) Durability of structural adhesive joints. Ph.D. thesis, London, Imperial College of Science, Technology and MedicineGoogle Scholar
  30. Manson SS (1954) Behaviour of materials under conditions of thermal stress. In: National Advisory Commission on Aeronautics. Report 1170, Lewis Flight Propulsion Laboratory, Cleveland, pp 317–350Google Scholar
  31. Miner MA (1945) J Appl Mech 12:64Google Scholar
  32. Nisitani H, Nakamura K (1982) Trans Jpn Soc Mech Eng 48:990CrossRefGoogle Scholar
  33. Palmgren A (1924) Z Ver Dtsch Ing 68:339Google Scholar
  34. Paris PC, Gomez MP, Anderson WE (1961) Trend Eng 13:9Google Scholar
  35. Pirondi A, Moroni F (2010) J Adhes 86:501CrossRefGoogle Scholar
  36. Quaresimin M, Ricotta M (2006) Comp Sci Technol 66:647CrossRefGoogle Scholar
  37. Rice JR (1968) J Appl Mech 35:379CrossRefGoogle Scholar
  38. Saxena A (1986) In: Underwood JH et al (eds) Fracture mechanics: seventeenth volume, ASTM STP 905. American Society for Testing and Materials, Philadelphia, pp 185–201CrossRefGoogle Scholar
  39. Schaff JR, Davidson BD (1997a) J Comp Mater 31:128CrossRefGoogle Scholar
  40. Schaff JR, Davidson BD (1997b) J Comp Mater 31:158CrossRefGoogle Scholar
  41. Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD, Abdel Wahab MM (2009a) Int J Adhes Adhes 29:361CrossRefGoogle Scholar
  42. Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD, Abdel Wahab MM (2009b) Int J Fatigue 31:820CrossRefGoogle Scholar
  43. Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD, Abdel Wahab MM (2009c) Int J Adhes Adhes 29:639CrossRefGoogle Scholar
  44. Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD (2010a) Int J Fatigue 32:1278CrossRefGoogle Scholar
  45. Shenoy V, Ashcroft IA, Critchlow GW, Crocombe AD (2010b) Eng Fract Mech 77:1073CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations