Skip to main content

Fracture Tests

  • Reference work entry

Abstract

This chapter considers first the fracture in a bulk adhesive specimen under mode I, that is, tensile opening loading conditions. Then, the testing of adhesive joints using a linear-elastic fracture mechanics approach is considered. In these tests, the substrates are assumed to only deform in a linear-elastic manner, and any permanent deformation of the substrates is avoided. In adhesive joints, due to the directional constraint of the failure path that is often observed, it is common to encounter failures in the other loading modes, in addition to mode I. Thus, mode II (in-plane shear) and mixed-mode I/II testing of adhesive joints are also considered. There is often the need to measure the resistance to fracture in a joint with flexible substrates. In this case, the assumptions of linear elastic fracture mechanics may no longer be valid, and permanent deformation of the substrates may occur. One such test is the peel test and some variants of the peel test are considered in the present chapter, with a focus on the recent development of a geometry-independent peel test.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • ASTM (1999) ASTM D5045. Determination of the fracture toughness of polymers

    Google Scholar 

  • ASTM (1990) ASTM D3433. Annual book of ASTM standards. Adhesives section 15. Philadelphia. 15.06

    Google Scholar 

  • ASTM (2004) Standard test method for floating roller peel resistance of adhesives, ASTM International

    Google Scholar 

  • ASTM (2004b) Standard test method for mixed mode I-Mode II interlaminar fracture toughness of unidirectional fibre reinforced polymer matrix composites. ASTM Standard D6671M:1–14

    Google Scholar 

  • ASTM (2006) Standard test method for climbing drum peel for adhesives, ASTM International

    Google Scholar 

  • Baldan A (2004) Review: adhesively-bonded joints and repairs in metallic alloys, polymers and composite materials – adhesives, adhesion theory and surface pretreatment. J Mater Sci 39:1–49

    Article  Google Scholar 

  • Berry JP (1960) Some kinetic considerations of the Griffith criterion of fracture-i; eqns of motion at constant deformation. J Mech Phys Solids 8:207–216

    Article  Google Scholar 

  • Bishopp JA (2005) Surface pretreatment for structural bonding. Handbook of adhesives and sealants. P. Cognard. Elsevier 1:163–214

    Google Scholar 

  • Blackman BRK (2008) Delamination in adhesively bonded joints, Chapter 22. In: Sridharan S (ed) Delamination behaviour of composites. Woodhead Publishing, Cambridge

    Google Scholar 

  • Blackman BRK, Dear JP et al (1991) The calculation of adhesive fracture energies from DCB test specimens. J Mater Sci Lett 10:253–256

    Article  Google Scholar 

  • Blackman BRK, Hadavinia H et al (2003a) The calculation of adhesive fracture energies in mode I: revisiting the tapered double cantilever beam (TDCB) test. Eng Fract Mech 70(2):233–248

    Article  Google Scholar 

  • Blackman BRK, Kinloch AJ et al (2005) The determination of the mode II adhesive fracture energy, G IIC, of structural adhesive joints: an effective crack length approach. Eng Fract Mech 72:877–897

    Article  Google Scholar 

  • Blackman BRK, Kinloch AJ et al (2003b) Measuring the mode I adhesive fracture energy, G IC, of structural adhesive joints: the results of an International round-robin. Int J Adhes Adhes 23:293–305

    Article  Google Scholar 

  • Brunner AJ, Murphy N et al (2009) Development of a standardised procedure for the characterisation of interlamina delamination propagation in advanced composits under fatigue mode I loading conditions. Eng Fract Mech 76(18):2678–2689

    Article  Google Scholar 

  • BSI (1993) Peel test for a flexible bonded-to-rigid test specimen assembly. 90 degree peel. Adhesives, BSI

    Google Scholar 

  • BSI (1993) Peel test for a flexible bonded-to-rigid test specimen assembly. 180 degree peel. Adhesives, BSI

    Google Scholar 

  • BSI (2001) Determination of the mode I adhesive fracture energy, G IC, of structural adhesives using the double cantilever beam (DCB) and tapered double cantilever beam (TDCB) specimens. BS 7991

    Google Scholar 

  • BSI (2005) T-Peel test for flexible-to-flexible bonded assemblies. Adhesives, BSI

    Google Scholar 

  • BSI (2009) Structural adhesives. Guidelines for the surface preparation of metals and plastics prior to adhesive bonding, BSI: 35 pages

    Google Scholar 

  • Chai H (1986) Bond thickness effect in adhesive joints and its significance for mode I interlaminar fracture of composites. In: Seventh conference on composite materials: testing and design ASTM STP 893, American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • Chai H (1988) Shear fracture. Int J Fract 37:137–159

    Google Scholar 

  • Davies P, Blackman BRK et al. (2001). Mode II delamination. In: Moore DR, Pavan A, Williams JG (eds) Fracture mechanics testing methods for polymers adhesives and composites. Elsevier, Amsterdam, London, New York, ESIS publication 28, pp 307–334

    Chapter  Google Scholar 

  • Dillard DA (2010) Improving adhesive joint design using fracture mechanics. In: Dillard DA (ed) Advances in structural adhesive bonding. Woodhead Publishing, Oxford, Cambridge, New Delhi, pp 350–388

    Chapter  Google Scholar 

  • Dillard DA, Singh HK et al (2009) Observations of decreased fracture toughness for mixed mode fracture testing of adhesively bonded joints. J Adhes Sci Technol 23(10–11):1515–1530

    Article  Google Scholar 

  • Edde FC, Verreman Y (1995) Nominally constant strain energy release rate specimen for the study of mode II fracture and fatigue in adhesively bonded joints. Int J Adhes Adhes 15:29–32

    Article  Google Scholar 

  • Fernlund G, Spelt JK (1994) Mixed-mode fracture characterization of adhesive joints. Compos Sci Technol 50:441–449

    Article  Google Scholar 

  • Hashemi S, Kinloch AJ et al (1990) The analysis of interlaminar fracture in uniaxial fibre-polymer composites. Proceeding of the Royal Society London A427:173–199

    Article  Google Scholar 

  • ISO (2000) Standard test method for the determination of fracture toughness (Gc and Kc) – A linear elastic fracture mechanics approach. ISO Standard ISO 13586

    Google Scholar 

  • ISO (2001) Standard test method for mode I interlaminar fracture toughness, GIC, of unidirectional fibre-reinforced polymer matrix composites. ISO 15024

    Google Scholar 

  • ISO (2009) Adhesives – Detemination of the mode I adhesive fracture energy GIC of structural adhesive joints using double cantilever beam and tapered double beam specimens. ISO Standard 25217

    Google Scholar 

  • Kawashita LF, Moore DR et al (2005) Comparison of peel tests for metal-polymer laminates for aerospace applications. J Adhes 81:561–586

    Article  Google Scholar 

  • Kawashita LF, Moore DR et al (2006) Protocols for the measurement of adhesive fracture toughness by peel tests. J Adhes 82:973–995

    Article  Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives: science and technology. Chapman & Hall, London and New York

    Book  Google Scholar 

  • Kinloch AJ, Kodokian GKA et al (1992) The adhesion of thermplastic fibre composites. Philosophical Translation Of the Royal Society London A.338:83–112

    Google Scholar 

  • Kinloch AJ, Lau CC et al (1994) The peeling of flexible laminates. Int J Fract 66:45–70

    Article  Google Scholar 

  • Kinloch AJ, Williams JG (2002) The mechanics of peel tests. In: Pocius AV, Dillard DA (eds) The mechanics of adhesion, vol 1. Elsevier, Amsterdam, The Netherlands, pp 273–302

    Google Scholar 

  • Liechti KM, Freda T (1989) On the use of laminated beams for the deformation of pure and mixed mode fracture properties of structural adhesives. J Adhes 29:145–169

    Article  Google Scholar 

  • Liu Z, Gibson RF et al (2002) The use of a modifed mixed mode bending test for the characterisation of moxed mode fracture behaviour of adhesively bonded metal joints. J Adhes 78:223–241

    Article  Google Scholar 

  • Martin RH, Davidson BD (1999) Mode II fracture toughness evaluation using four point bend, end notched flexure test. Plast, Rubber Compos 28(8):401–406

    Google Scholar 

  • Molitor P, Barron V et al (2001) Surface treatment of titanium for adhesive bonding to polymer composites: a review. Int J Adhes Adhes 21:129–136

    Article  Google Scholar 

  • Moore DR (2008) An introduction to the special issue on peel testing. Int J Adhes Adhes 28:153–157

    Article  Google Scholar 

  • Moore DR, Williams JG (2007) A protocol for determination of the adhesive fracture toughness of flexible laminates by peel testing: fixed arm and T-peel methods. ESIS TC4 protocol

    Google Scholar 

  • O'Brien TK (1998) Composite interlaminar shear fracture toughness, GIIC: shear measurement or sheer myth? In: Bucinell RB (ed) Composite materials: fatigue and fracture, 7th volume. ASTM STP 1330, West Conshohocken, pp 3–18

    Google Scholar 

  • Papini M, Furnlund G et al (1994) Effect of crack growth mechanisms on the prediction of fracture load of adhesive joints. Compos Sci Technol 52:561–570

    Article  Google Scholar 

  • Qiao P, Wang J et al (2003a) Analysis of tapered ENF specimen and characterization of bonded interface fracture under Mode II loading. Int J Solids Struct 40:1865–1884

    Article  MATH  Google Scholar 

  • Qiao P, Wang J et al (2003b) Tapered beam on elastic foundation model for compliance rate of change of TDCB specimen. Eng Fract Mech 70:339–353

    Article  Google Scholar 

  • Reeder JR (1993) A bilinear failure criterion for mixed-mode delamination. In: Camponeschi ET (ed) Composite materials: testing and design, vol 11. ASTM STP, Philadelphia, pp 303–322

    Chapter  Google Scholar 

  • Ripling EJ, Mostovoy S et al (1964) Measuring fracture toughness of adhesive joints. Materials Research & Standards (ASTM Bulletin) 4(3, March):129–134

    Google Scholar 

  • Swadener JG, Liechtiet KM et al (1999) Mixed mode fracture of automotive bonded joints. SAMPE-ACCE-DOE Advanced Cpmposites Conference. Detroit, MI

    Google Scholar 

  • Williams JG (1988) On the calculation of energy release rates for cracked laminates. Int J Fract 36:101–119

    Article  Google Scholar 

  • Williams JG (2001) Determination of KIC and GIC in polymers. In: Moore DR, Pavan A, Williams JG (eds) Fracture mechanics testing methods for polymers, adhesives and composites. Elsevier Science, Amsterdam, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bamber R. K. Blackman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Blackman, B.R.K. (2011). Fracture Tests. In: da Silva, L.F.M., Öchsner, A., Adams, R.D. (eds) Handbook of Adhesion Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01169-6_20

Download citation

Publish with us

Policies and ethics