Skip to main content

Computational Nature of Gene Assembly in Ciliates

  • Reference work entry
Handbook of Natural Computing

Abstract

Ciliates are a very diverse and ancient group of unicellular eukaryotic organisms. A feature that is essentially unique to ciliates is the nuclear dualism, meaning that they have two functionally different types of nuclei, the macronucleus and the micronucleus. During sexual reproduction a micronucleus is transformed into a macronucleus – this process is called gene assembly, and it is the most involved naturally occurring example of DNA processing that is known to us. Gene assembly is a fascinating research topic from both the biological and the computational points of view.

In this chapter, several approaches to the computational study of gene assembly are considered. This chapter is self-contained in the sense that the basic biology of gene assembly as well as mathematical preliminaries are introduced. Two of the most studied molecular models for gene assembly, intermolecular and intramolecular, are presented and the main mathematical approaches used in studying these models are discussed. The topics discussed in more detail include the string and graph rewriting models, invariant properties, template-based DNA recombination, and topology-based models. This chapter concludes with a brief discussion of a number of research topics that, because of the space restrictions, could not be covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alhazov A, Petre I, Rogojin V (2008) Solutions to computational problems through gene assembly. J Nat Comput 7(3):385–401

    Article  MathSciNet  MATH  Google Scholar 

  • Alhazov A, Petre I, Rogojin V (2009) The parallel complexity of signed graphs: Decidability results and an improved algorithm. Theor Comput Sci 410(24–25):2308–2315

    Article  MathSciNet  MATH  Google Scholar 

  • Alhazov A, Li C, Petre I (2010) Computing the graph-based parallel complexity of gene assembly. Theor Comput Sci 411(25):2359–2367

    Article  MathSciNet  MATH  Google Scholar 

  • Angeleska A, Jonoska N, Saito M, Landweber LF (2007) RNA-template guided DNA assembly. J Theor Biol 248:706–720

    Article  Google Scholar 

  • Angeleska A, Jonoska N, Saito M (2009) DNA recombination through assembly graphs. Discrete Appl Math 157(14):3020–3037

    Article  MathSciNet  MATH  Google Scholar 

  • Brijder R (2008) Gene assembly and membrane systems. PhD thesis, University of Leiden

    Google Scholar 

  • Brijder R, Hoogeboom H (2008a) The fibers and range of reduction graphs in ciliates. Acta Inform 45:383–402

    Article  MathSciNet  MATH  Google Scholar 

  • Brijder R, Hoogeboom HJ (2008b) Extending the overlap graph for gene assembly in ciliates. In: Martín-Vide C, Otto F, Fernau H (eds) LATA 2008: 2nd international conference on language and automata theory and applications, Tarragona, Spain, March 2008. Lecture notes in computer science, vol 5196. Springer, Berlin Heidelberg, pp 137–148

    Chapter  Google Scholar 

  • Brijder R, Hoogeboom H, Rozenberg G (2006) Reducibility of gene patterns in ciliates using the breakpoint graph. Theor Comput Sci 356:26–45

    Article  MathSciNet  MATH  Google Scholar 

  • Brijder R, Hoogeboom H, Muskulus M (2008) Strategies of loop recombination in ciliates. Discr Appl Math 156:1736–1753

    Article  MathSciNet  MATH  Google Scholar 

  • Cavalcanti A, Clarke TH, Landweber L (2005) MDS_IES_DB: a database of macronuclear and micronuclear genes in spirotrichous ciliates. Nucl Acids Res 33:396–398

    Article  Google Scholar 

  • Chang WJ, Kuo S, Landweber L (2006) A new scrambled gene in the ciliate Uroleptus. Gene 368:72–77

    Article  Google Scholar 

  • Daley M, Domaratzki M (2007) On codes defined by bio-operations. Theor Comput Sci 378(1):3–16

    Article  MathSciNet  MATH  Google Scholar 

  • Daley M, McQuillan I (2005a) On computational properties of template-guided DNA recombination. In: Carbone A, Pierce N (eds) DNA 11: Proceedings of 11th international meeting on DNA-based computers, London, Ontario, June 2005. Lecture notes in computer science, vol 3892. Springer, Berlin, Heidelberg, pp 27–37

    Google Scholar 

  • Daley M, McQuillan I (2005b) Template-guided DNA recombination, Theor Comput Sci 330(2):237–250

    Article  MathSciNet  MATH  Google Scholar 

  • Daley M, McQuillan I (2006) Useful templates and iterated template-guided DNA recombination in ciliates. Theory Comput Syst 39(5):619–633

    Article  MathSciNet  MATH  Google Scholar 

  • Daley M, Ibarra OH, Kari L (2003a) Closure properties and decision questions of some language classes under ciliate bio-operations. Theor Comput Sci 306(1–3): 19–38

    Article  MathSciNet  MATH  Google Scholar 

  • Daley M, Ibarra OH, Kari L, McQuillan I, Nakano K (2003b) The ld and dlad bio-operations on formal languages. J Autom Lang Comb 8(3):477–498

    MathSciNet  MATH  Google Scholar 

  • Daley M, Kari L, McQuillan I (2004) Families of languages defined by ciliate bio-operations. Theor Comput Sci 320(1):51–69

    Article  MathSciNet  MATH  Google Scholar 

  • Daley M, Domaratzki M, Morris A (2007) Intramolecular template-guided recombination. Int J Found Comput Sci 18(6):1177–1186

    Article  MATH  Google Scholar 

  • Daley M, McQuillan I, Stover N, Landweber LF (2010) A simple topological mechanism for gene descrambling in Stichotrichous ciliates. (under review)

    Google Scholar 

  • Dassow J, Holzer M (2005) Language families defined by a ciliate bio-operation: hierarchies and decidability problems. Int J Found Comput Sci 16(4):645–662

    Article  MathSciNet  MATH  Google Scholar 

  • Dassow J, Vaszil G (2006) Ciliate bio-operations on finite string multisets. In: Ibarra OH, Dang Z (eds) 10th international conference on developments in language theory, Santa Barbara, CA, June 2006. Lecture notes in computer science, vol 4036. Springer, Berlin Heidelberg, pp 168–179

    Chapter  Google Scholar 

  • Dassow J, Mitrana V, Salomaa A (2002) Operations and languages generating devices suggested by the genome evolution. Theor Comput Sci 270(1–2):701–738

    Article  MathSciNet  MATH  Google Scholar 

  • Dennis C, Fedorov A, Käs E, Salomé L, Grigoriev M (2004) RuvAB-directed branch migration of individual Holliday junctions is impeded by sequence heterology. EMBO J 23:2413–2422

    Article  Google Scholar 

  • Domaratzki M (2007) Equivalence in template-guided recombination, J Nat Comput 7(3):439–449

    Article  MathSciNet  Google Scholar 

  • Ehrenfeucht A, Rozenberg G (2006) Covers from templates. Int J Found Comput Sci 17(2):475–488

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrenfeucht A, Petre I, Prescott DM, Rozenberg G (2000) Universal and simple operations for gene assembly in ciliates. In: Mitrana V, Martin-Vide C (eds) Where mathematics, computer science, linguistics and biology meet. Kluwer, Dordrecht, pp 329–342

    Google Scholar 

  • Ehrenfeucht A, Petre I, Prescott DM, Rozenberg G (2001a) Circularity and other invariants of gene assembly in ciliates. In: Ito M, Păun G and Yu S (eds) Words, semigroups, and transductions. World Scientific, Singapore, pp 81–97

    Chapter  Google Scholar 

  • Ehrenfeucht A, Prescott DM, Rozenberg G (2001b) Computational aspects of gene (un)scrambling in ciliates. In: Landweber LF, Winfree E (eds) Evolution as computation. Springer, Berlin, Heidelberg, New York, pp 216–256

    Google Scholar 

  • Ehrenfeucht A, Harju T, Rozenberg G (2002) Gene assembly in ciliates through circular graph decomposition. Theor Comput Sci 281:325–349

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrenfeucht A, Harju T, Petre I, Prescott DM, Rozenberg G (2003a) Computation in living cells: gene assembly in ciliates. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Ehrenfeucht A, Harju T, Petre I, Prescott DM, Rozenberg G (2003b) Formal systems for gene assembly in ciliates. Theor Comput Sci 292:199–219

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrenfeucht A, Prescott DM, Rozenberg G (2007) A model for the origin of internal eliminated segments (IESs) and gene rearrangement in stichotrichous ciliates. J Theor Biol 244(1):108–114

    Article  MathSciNet  Google Scholar 

  • Freund R, Martin-Vide C, Mitrana V (2002) On some operations on strings suggested by gene assembly in ciliates. New Generation Comput 20(3):279–293

    Article  MATH  Google Scholar 

  • Harju T, Petre I, Rozenberg G (2004a) Two models for gene assembly. In: Karhumäki J, Pǎun G, Rozenberg G (eds) Theory is forever. Springer, Berlin, pp 89–101

    Chapter  Google Scholar 

  • Harju T, Petre I, Rozenberg G (2004b) Gene assembly in ciliates: formal frameworks. In: Paun G, Rozenberg G, Salomaa A (eds) Current trends in theoretical computer science (the challenge of the new century). World Scientific, Hackensack, NJ, pp 543–558

    Chapter  Google Scholar 

  • Harju T, Li C, Petre I, Rozenberg G (2006a) Parallelism in gene assembly. Nat Comp 5(2):203–223

    Article  MathSciNet  MATH  Google Scholar 

  • Harju T, Petre I, Rogojin V, Rozenberg G (2006b) Simple operations for gene assembly. In: Kari L (ed) Proceedings of 11th international meeting on DNA-based computers, London, Ontario, 2005. Lecture notes in computer science, vol 3892. Springer, Berlin, pp 96–111

    Google Scholar 

  • Harju T, Petre I, Rozenberg G (2006c) Modelling simple operations for gene assembly. In: Chen J, Jonoska N, Rozenberg G (eds) Nanotechnology: science and computation. Springer, Berlin, pp 361–376

    Chapter  Google Scholar 

  • Harju T, Li C, Petre I, Rozenberg G (2007) Complexity measures for gene assembly. In: Tuyls K, Westra R, Saeys Y, Now'e A (eds) Proceedings of the knowledge discovery and emergent complexity in bioinformatics workshop, Ghent, Belgium, May 2006. Lecture notes in bioinformaties, vol 4366. Springer, Berlin, Heidelberg, pp 42–60

    Chapter  Google Scholar 

  • Harju T, Li C, Petre I (2008a) Graph theoretic approach to parallel gene assembly. Discr Appl Math 156(18): 3416–3429

    Article  MathSciNet  MATH  Google Scholar 

  • Harju T, Li C, Petre I (2008b) Parallel complexity of signed graphs for gene assembly in ciliates. Soft Comput Fusion Found Methodol Appl 12(8):731–737

    Article  MATH  Google Scholar 

  • Harju T, Petre I, Rogojin V, Rozenberg G (2008c) Patterns of simple gene assembly in ciliates, Discr Appl Math 156(14):2581–2597

    Article  MathSciNet  MATH  Google Scholar 

  • Hausmann K, Bradbury PC (eds) (1997) Ciliates: cells as organisms. Vch Pub, Deerfield Beach, FL

    Google Scholar 

  • Ilie L, Solis-Oba R (2006) Strategies for DNA self-assembly in ciliates. In: Mao C, Yokomori T (eds) DNA'06: Proceedings of the 12th international meeting on DNA computing, Seoul, Korea, June 2006. Lecture notes in computer science, vol 4287. Springer, Berlin, pp 71–82

    Google Scholar 

  • Ishdorj T-O, Petre I (2008) Gene assembly models and boolean circuits. Int J Found Comput Sci 19(5):1133–1145

    Article  MathSciNet  MATH  Google Scholar 

  • Ishdorj T-O, Petre I, Rogojin V (2007) Computational power of intramolecular gene assembly. Int J Found Comp Sci 18(5):1123–1136

    Article  MathSciNet  MATH  Google Scholar 

  • Ishdorj T-O, Loos, R, Petre I (2008) Computational efficiency of intermolecular gene assembly. Fund Informaticae 84(3-4):363–373

    MathSciNet  MATH  Google Scholar 

  • Jahn CL, Klobutcher LA (2000) Genome remodeling in ciliated protozoa. Ann Rev Microbiol 56:489–520

    Article  Google Scholar 

  • Kari L, Landweber LF (1999) Computational power of gene rearrangement. In: Winfree E, Gifford DK (eds) Proceedings of DNA based computers, V. Massachusetts Institute of Technology, 1999 American Mathematical Society, Providence, RI, pp 207–216

    Google Scholar 

  • Kari L, Kari J, Landweber LF (1999) Reversible molecular computation in ciliates. In: Karhumäki J, Maurer H, Pǎun G, Rozenberg G (eds), Jewels are forever. Springer, Berlin, Heidelberg, New York, pp 353–363

    Chapter  Google Scholar 

  • Kauman LH (1999) Virtual knot theory. Eur J Combinatorics 20:663–690

    Article  Google Scholar 

  • Krasnow MA, Stasiak A, Spengler SJ, Dean F, Koller T, Cozzarelli NR (1983) Determination of the absolute handedness of knots and catenanes of DNA. Nature 304(5926):559–560

    Article  Google Scholar 

  • Landweber LF, Kari L (1999) The evolution of cellular computing: Nature’s solution to a computational problem. In: Kari L, Rubin H, Wood D (eds) Special issue of Biosystems: proceedings of DNA based computers IV, vol 52(1–3). Elsevier, Amsterdam, pp 3–13

    Google Scholar 

  • Landweber LF, Kari L (2002) Universal molecular computation in ciliates. In: Landweber LF, Winfree E (eds) Evolution as computation. Springer, Berlin, Heidelberg, New York, pp 257–274

    Chapter  Google Scholar 

  • Langille M, Petre I (2006) Simple gene assembly is deterministic. Fund Inf 72:1–12

    MathSciNet  Google Scholar 

  • Langille M, Petre I (2007) Sequential vs. parallel complexity in simple gene assembly. Theor Comput Sci 395(1):24–30

    Article  MathSciNet  Google Scholar 

  • Langille M, Petre I, Rogojin V (2010) Three models for gene assembly in ciliates: a comparison. Comput Sci J Moldova 18(1):1–26

    MathSciNet  Google Scholar 

  • Möllenbeck M, Zhou Y, Cavalcanti ARO, Jönsson F, Higgins BP, Chang W-J, Juranek S, Doak TG, Rozenberg G, Lipps HJ, Landweber LF (2008) The pathway to detangle a scrambled gene. PLoS ONE 3(6):2330

    Article  Google Scholar 

  • Nowacki M, Vijayan V, Zhou Y, Schotanus K, Doak TG, Landweber LF (2008) RNA-mediated epigenetic programming of a genome-rearrangement pathway. Nature 451:153–158

    Article  Google Scholar 

  • Petre I (2006) Invariants of gene assembly in stichotrichous ciliates. IT, Oldenbourg Wissenschaftsverlag 48(3):161–167

    MathSciNet  Google Scholar 

  • Petre I, Rogojin V (2008) Decision problems for shuffled genes. Info Comput 206(11):1346–1352

    Article  MathSciNet  MATH  Google Scholar 

  • Petre I, Skogman S (2006) Gene assembly simulator. http://combio.abo.fi/simulator/simulator.php

  • Pevzner P (2000) Computational molecular biology: an algorithmic approach. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  • Prescott DM (1994) The DNA of ciliated protozoa. Microbiol Rev 58(2):233–267

    Google Scholar 

  • Prescott DM (1999) The evolutionary scrambling and developmental unscrambling of germline genes in hypotrichous ciliates. Nucl Acids Res 27(5):1243–1250

    Article  Google Scholar 

  • Prescott DM (2000) Genome gymnastics: unique modes of DNA evolution and processing in ciliates. Nat Rev Genet 3:191–198

    Article  Google Scholar 

  • Prescott DM, DuBois M (1996) Internal eliminated segments (IESs) of oxytrichidae. J Eukariot Microbiol 43:432–441

    Article  Google Scholar 

  • Prescott DM, Greslin AF (1992) Scrambled actin I gene in the micronucleus of Oxytricha nova. Dev Gen 13(1):66–74

    Article  Google Scholar 

  • Prescott DM, Ehrenfeucht A, Rozenberg G (2001a) Molecular operations for DNA processing in hypotrichous ciliates. Eur J Protistol 37:241–260

    Article  Google Scholar 

  • Prescott DM, Ehrenfeucht A, Rozenberg G (2001b) Template-guided recombination for IES elimination and unscrambling of genes in stichotrichous ciliates. J Theor Biol 222:323–330

    Article  MathSciNet  Google Scholar 

  • Setubal J, Meidanis J (1997) Introduction to computational molecular biology. PWS Publishing Company, Boston, MA

    Google Scholar 

  • White JH (1992) Geometry and topology of DNA and DNA-protein interactions. In: Sumners et al. (eds) New scientific applications of geometry and topology, American Mathematical Society, Providence, RI, pp 17–38

    Google Scholar 

  • Yan H, Zhang X, Shen Z, Seeman NC (2002) A robust DNA mechanical device controlled by hybridization topology. Nature 415:62–65

    Article  Google Scholar 

  • Yurke B, Turberfield AJ, Mills AP, Simmel FC Jr (2000) A DNA fueled molecular machine made of DNA. Nature 406:605–608

    Article  Google Scholar 

  • Zerbib D, Mezard C, George H, West SC (1998) Coordinated actions of RuvABC in Holliday junction processing. J Mol Biol 281(4):621–630

    Article  Google Scholar 

Download references

Acknowledgments

MD and GR acknowledge support by NSF, grant 0622112. IP acknowledges support by the Academy of Finland, grants 108421 and 203667. NJ has been supported in part by the NSF grants CCF 0523928 and CCF 0726396.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Brijder, R., Daley, M., Harju, T., Jonoska, N., Petre, I., Rozenberg, G. (2012). Computational Nature of Gene Assembly in Ciliates. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds) Handbook of Natural Computing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92910-9_37

Download citation

Publish with us

Policies and ethics