Skip to main content

DNA Damage and Repair in Skin Aging

  • Reference work entry
  • 436 Accesses

Abstract

DNA has many roles in skin cell function, including directing metabolism, storing the information of heredity, and sensing cell danger. Damage to DNA is a major cause of the chronic conditions of aging and photoaging. The natural repair system offers significant protection, and new compounds offer the promise of augmenting DNA repair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   499.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Housman T, et al. Skin cancer is among the most costly of all cancers to treat for the Medicare population. J Am Acad Dermatol. 2003;48:425–429.

    Article  PubMed  Google Scholar 

  2. Salasche S. Epidemiology of actinic keratosis and squamous cell carcinoma. J Am Acad Dermatol. 2000;42:S4–S7.

    Article  Google Scholar 

  3. Brash D. Sunlight and the onset of skin cancer. Trends Genet. 1997;13:410–414.

    Article  CAS  PubMed  Google Scholar 

  4. Yarr M, et al. Photoaging: mechanism, prevention and therapy. Br J Dermatol. 2007;157:874–887.

    Article  Google Scholar 

  5. Cadet J, et al. Ultraviolet radiation – mediated damage to cellular DNA. Mutat Res. 2005;571:3–7.

    CAS  PubMed  Google Scholar 

  6. Mahmoud BH, et al. Effects of visible light on the skin. Photochem Photobiol. 2008;84:450–462.

    Article  CAS  PubMed  Google Scholar 

  7. Schreier W, et al. Thymine dimerization in DNA is an ultrafast photoreaction. Science. 2007;315:625–629.

    Article  CAS  PubMed  Google Scholar 

  8. Yoon J-H, et al. The DNA damage spectrum produced by simulated sunlight. J Mol Biol. 2000;299:681–693.

    Article  CAS  PubMed  Google Scholar 

  9. Courdavault S, et al. Larger yield of cyclobutane dimers than 8-oxo-7, 8-dihydroguanine in the DNA of UVA-irradiated human skin cells. Mutat Res. 2004;556:135–142.

    CAS  PubMed  Google Scholar 

  10. Sancar A, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Ann Rev Biochem. 2004;73:39–85.

    Article  CAS  PubMed  Google Scholar 

  11. Christmann M, et al. Mechanisms of human DNA repair: an update. Toxicology. 2003;193:3–34.

    Article  CAS  PubMed  Google Scholar 

  12. Yarosh D, et al. After sun reversal of DNA damage: enhancing skin repair. Mutat Res. 2005;571:57–64.

    CAS  PubMed  Google Scholar 

  13. Tanaka K, et al. Restoration of ultraviolet-induced unscheduled DNA synthesis of xeroderma pigmentosum cells by the concomitant treatment with bacteriophage T4 endonuclease V and HVJ (Sendai virus). Proc Natl Acad Sci USA. 1975;72:4071–4075.

    Article  CAS  PubMed  Google Scholar 

  14. Carell T, et al. The mechanism of action of DNA photolyases. Curr Opin Chem Biol. 2001;5:491–498.

    Article  CAS  PubMed  Google Scholar 

  15. Stege H, et al. Enzyme plus light therapy to repair DNA damage in ultraviolet-B-irradiated human skin. Proc Natl Acad Sci USA. 2000;97:1790–1795.

    Article  CAS  PubMed  Google Scholar 

  16. Cleaver J. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat Rev. 2005;5:564–573.

    Article  CAS  Google Scholar 

  17. Randle H. The historical link between solid-organ transplantation, immunosuppression, and skin cancer. Dermatol Surg. 2004;30:595–597.

    Article  PubMed  Google Scholar 

  18. Yarosh D, et al. Calcineurin inhibitors decrease DNA repair and apoptosis in human keratinocytes following ultraviolet B irradiation. J Invest Dermatol. 2005;125:1020–1025.

    Article  CAS  PubMed  Google Scholar 

  19. Au W, Navasumrit, et al. Use of biomarkers to characterize functions of polymorphic DNA repair genotypes. Int J Hyg Environ Health. 2004;207:301–304.

    Article  CAS  PubMed  Google Scholar 

  20. Goode E, Ulrich C, Potter J. Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epid Biom Prev. 2002;11:1513–1530.

    CAS  Google Scholar 

  21. Kohno T, et al. Genetic polymorphisms and alternative splicing of the hOOG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1988;16:3219–3225.

    Article  Google Scholar 

  22. Dherin C, et al. Excision of oxidatively damaged DNA bases by the human α-hOGG1 protein and the polymorphic α-hOGG1(Ser326Cys) protein which is frequently found in human populations. Nucl Acids Res. 1999;27:4001–4007.

    Article  CAS  PubMed  Google Scholar 

  23. Janssen K, et al. DNA repair activity of 8-oxoguanine DNA glycosylase I (OGG1) in human lymphocytes is not dependent on genetic polymorphism Ser326/Cys326. Mutat Res. 2001;486:207–216.

    CAS  PubMed  Google Scholar 

  24. Yarosh D, et al. DNA repair gene polymorphisms affect cytotoxicity in the National Cancer Institute Human Tumor Cell Line Screening Panel. Biomarkers. 2005;10:188–202.

    Article  CAS  PubMed  Google Scholar 

  25. Yarosh D, et al. After sun reversal of DNA damage: enhanced skin repair. Mutat Res. 2005;571:57–64.

    CAS  PubMed  Google Scholar 

  26. Mahroos R, et al. Effect of sunscreen application on UV-induced thymine imers. Arch Dermatol. 2002;138:1480–1485.

    Article  PubMed  Google Scholar 

  27. Funk JO. Cell cycle checkpoint genes and cancer. Encyclopedia Life Sci. 2005;1–5.

    Google Scholar 

  28. Harper JW, et al. The DNA damage response: ten years after. Mol Cell. 2007;28:739–745.

    Article  CAS  PubMed  Google Scholar 

  29. Sancar A, et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85.

    Article  CAS  PubMed  Google Scholar 

  30. Guzman E, et al. Mad dogs, Englishmen and apoptosis: the role of cell death in UV-induced skin cancer. Apoptosis. 2003;8:315–325.

    Article  CAS  PubMed  Google Scholar 

  31. Lu Y-P, et al. Effect of caffeine on the ATR/Chk1 pathway in the epidermis of UVB-irradiated mice. Cancer Res. 2008;68:2523–2529.

    Article  CAS  PubMed  Google Scholar 

  32. Zhou BB, et al. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433–439.

    Article  CAS  PubMed  Google Scholar 

  33. Unsal-Kacmaz K, et al. Preferential binding of ATR protein to UV-damaged DNA. Proc Natl Acad Sci USA. 2002;99:6673–6678.

    Article  CAS  PubMed  Google Scholar 

  34. Kondo S. The roles of keratinocyte-derived cytokines in the epidermis and their possible responses to UVA-irradiation. J Invest Dermatol Symp Proc. 1999;4:177–183.

    Article  CAS  Google Scholar 

  35. Ansel J, et al. Cytokine modulation of keratinocyte cytokines. J Invest Dermatol. 1990;94:101S–107S.

    Article  CAS  PubMed  Google Scholar 

  36. Luger TA, et al. Evidence for an epidermal cytokine network. J Invest Dermatol. 1990;95:100S–104S.

    Article  CAS  PubMed  Google Scholar 

  37. Enk AH, et al. Early molecular events in the induction phase of contact sensitivity. Proc Natl Acad Sci USA. 1992;89:1398–1402.

    Article  CAS  PubMed  Google Scholar 

  38. Heck DE, et al. Solar ultraviolet radiation as a trigger of cell signal transduction. Toxycol Appl Pharmacol. 2004;195:288–297.

    Article  CAS  Google Scholar 

  39. Barr R, et al. Suppressed alloantigen presentation, increased TNF-α, IL-1, IL-1RA, IL-10, and modulation of TNF-R in UV-irradiated human skin. J Invest Dermatol. 1999;112:692–698.

    Article  CAS  PubMed  Google Scholar 

  40. Schwarz A, et al. Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair. Nature Cell Biol. 2002;4:26–31.

    Article  CAS  PubMed  Google Scholar 

  41. Kripke M. Immunologic unresponsiveness induced by UV radiation. Immunol Rev. 1984;80:87–102.

    Article  CAS  PubMed  Google Scholar 

  42. Streilein J. Immunogenetic factors in skin cancer. N Engl J Med. 1991;325:884–887.

    Article  CAS  PubMed  Google Scholar 

  43. Vink A, et al. The inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers. Proc Natl Acad Sci USA. 1997;94:5255–5260.

    Article  CAS  PubMed  Google Scholar 

  44. Kuchel J, et al. Cyclobutane pyrimidine dimer formation is a molecular trigger for solar-simulated ultraviolet radiation-induced suppression of memory immunity in humans. Photochem Photobiol Sci. 2005;4:577–582.

    Article  CAS  PubMed  Google Scholar 

  45. Brennan M, et al. Matrix metalloproteinase-1 is the major collagenolytic enzyme responsible for collagen damage in UV-irradiated human skin. Photochem Photobiol. 2003;78:43–48.

    Article  CAS  PubMed  Google Scholar 

  46. Wlaschek M, et al. UVA-induced autocrine stimulation of fibroblast-derived collagenase/MMP-1 by interrelated loops of interleukin-1 and interleukin-6. Photochem Photobiol. 1994;59:550–556.

    Article  CAS  PubMed  Google Scholar 

  47. Dong K, et al. UV-Induced DNA damage initiates release of MMP-1 in human skin. Exp Dermatol. 2008;17:1037–1044.

    Article  CAS  PubMed  Google Scholar 

  48. Fisher GJ, et al. Looking older. Fibroblast collapse and therapeutic implications. Arch Dermatol. 2008;666–672.

    Google Scholar 

  49. Leveque J-C, et al. Aging Skin: Properties and Functional Changes. Aulnoy-sous Bois: Informa Health Care, 1993.

    Google Scholar 

  50. Ryan T. The ageing of the blood supply and the lymphatic drainage of the skin. Micron. 2004;35:161–171.

    Article  CAS  PubMed  Google Scholar 

  51. Brash D. Sunlight and the onset of skin cancer. Trends Genet. 1997;13:410–414.

    Article  CAS  PubMed  Google Scholar 

  52. High W, et al. Genetic mutations involved in melanoma: a summary of our current understanding. Adv Dermatol. 2007;23:61–79.

    Article  PubMed  Google Scholar 

  53. Berneburg M, et al. Induction of the photoaging-associated mitochondrial common deletion in vivo in normal human skin. J Invest Dermatol. 2004;122:1277–1283.

    Article  CAS  PubMed  Google Scholar 

  54. Yarosh D, et al. Localization of liposomes containing a DNA repair enzyme in murine skin. J Invest Dermatol. 1994;103:461–468.

    Article  CAS  PubMed  Google Scholar 

  55. Wolf P, et al. Topical treatment with liposomes containing T4 endonuclease V protects human skin in vivo from ultraviolet-induced upregulation of interleukin-10 and tumor necrosis factor-α, J. Invest Dermatol. 2000;114:149–156.

    Article  CAS  PubMed  Google Scholar 

  56. Yarosh D, et al. Effect of topically applied T4 endonuclease V in liposomes on skin cancer in xeroderma pigmentosum: a randomized study. Lancet. 2001;357:926–929

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Yarosh, D.B. (2010). DNA Damage and Repair in Skin Aging. In: Farage, M.A., Miller, K.W., Maibach, H.I. (eds) Textbook of Aging Skin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89656-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89656-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89655-5

  • Online ISBN: 978-3-540-89656-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics