Skip to main content

See-Through Head Worn Display (HWD) Architectures

  • Reference work entry


Over the past 3 decades, as computer and display technology advanced along the path laid out by Moore’s Law of miniaturization and functionality, many writers presented scenarios for augmented reality (AR) displays centered on bringing information to the individual. In that the emphasis was on the individual experience, the initial technology that did not pursue a see-through geometry seemed viable. When the initial solutions, a generation of look-at displays resting on the nose bridge appeared around 2000, the market did not embrace it. Suddenly now, social media has burst on the scene and wireless access has become ubiquitous. The result is a renewed research interest in a family of see-through head-worn displays (HWDs) enabling real-time interaction throughout the global community.

See-through HWD design inherently requires an interdisciplinary approach; optical engineering, opto-mechanics, ergonomics, and psychology all being keys to the design process. The last decade has seen a game changing technology emerge, the organic light emitting display (OLED), replacing what was thought itself to be game changing, the light emitting diode (LED) illuminator combined with a liquid crystal display (LCD) or liquid crystal on silicon (LCoS) display, which in turn had replaced the initial technology, the mini-CRT. As this chapter comes to press, the first HD-format OLED displays are becoming available for prototype development. The industry is currently working to supply a system that will receive widespread consumer acceptance (meaning millions of units need to be manufacturable in a period of months once a design point is selected). The system must be low cost (hundreds of dollars to the buyer), and approach an eyeglass format with resolution that approaches that of the human visual system extending into the peripheral FOV.

This chapter will first motivate the potential benefits of HWDs, especially in see-through mode, and examine key technology paths that build on historical highlights. Market barriers to the emergence of eyewear format HWDs will next be highlighted. We will then review optical architectures for see-through HWDs and key factors and functions required of a successful see-through HWD. Specifically, building on fundamentals of optical design, the key engineering concepts and constraints will be presented and solutions discussed. Particular emphasis will be placed on differentiating the concept of an eye pupil and an operational eyebox. Next, the Lagrange invariant (LI), which sets fundamental limits in the optical design of HWDs, will be examined. Following the presentation of see-through HWDs, two differentiated solutions will be presented; the head-mounted (worn) projection display (HMPD) and the retinal scanning display (RSD). The chapter will conclude with a brief discussion of current research that may affect the solution that the market selects, we might predict by 2020.


  • Augmented Reality
  • Pixel Count
  • Input Coupler
  • Exit Pupil
  • Holographic Optical Element

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-79567-4_134
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   999.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-79567-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19



Advanced Helmet Mounted Display


Aluminum indium Gallium Phosphide


Advanced Research Projects Agency


Augmented Reality


Computer Generated Hologram


Center of Mass


Cathode Ray Tube


Dual Microlenslet Array


Diffractive Optical Element


Eyebox Expansion


Ferroelectric Liquid Crystal on Silicon


Forward-Looking Infrared


Field of View


Gallium Nitride


Global Positioning System


High Definition


Helmet Integrated Display Sight System


Head or Helmet-Mounted Display


Head-Mounted Projection Display


Holographic Optical Element


Head-Worn Display


Head-Worn Video


Integrated Helmet and Display Sighting System (IHADSS)


Interpupillary Distance


Indium Gallium Nitride


Liquid Crystal Display


Liquid Crystal on Silicon


Light Emitting Diode


Lagrange Invariant


Micro-Electro-Mechanical System


Microlens Array


Mixed Reality


Numerical Aperture


Optical Diagnostic and Applications Laboratory


Organic Light Emitting Display


Optical Research Associates


Personal Digital Assistant




Retinal Scanning Display


Substrate-Guided Relay


Total Internal Reflection


  1. Azuma R, Baillot Y, Behringer R, Feiner S, Julier S, MacIntyre B (2001) Recent advances in augmented reality. IEEE Comput Graph Appl 21(6):34–47

    CrossRef  Google Scholar 

  2. Rolland JP, Fuchs H (2000) Optical versus video see-through head-mounted displays in medical visualization. Presence Teleoperators Virtual Environ 9(3):287–309 (MIT Press)

    CrossRef  Google Scholar 

  3. Bichlmeier C, Heining SM, Feuerstein M, Navab N (2009) The virtual mirror: a new interaction paradigm for augmented reality environments. IEEE Trans Med Imag 28(9):1498–1510

    CrossRef  Google Scholar 

  4. Argotti Y, Davis L, Outters V, Rolland JP (2002) Dynamic superimposition of synthetic objects on rigid and simple-deformable objects. Comput Graph 26(6):919–930

    CrossRef  Google Scholar 

  5. Rosenthal A, State A, Lee J, Hirota G, Ackerman J, Keller K, Pisano ED, Jiroutek M, Muller K, Fuchs H (2002) Augmented reality guidance for needle biopsies: An initial randomized, controlled trial in phantoms. Med Image Anal 6(3):313–320

    CrossRef  Google Scholar 

  6. Klein G, Murray D (2009) Parallel tracking and mapping on a camera phone. In: Proceedings of the 8th IEEE international symposium on mixed and augmented reality. IEEE, Washington, DC, pp 83–86

    Google Scholar 

  7. Nilsson S, Johansson B, Jonsson A (2009) Using AR to support cross-organizational collaboration in dynamic tasks. In: Proceedings of the IEEE international symposium on mixed and augmented reality. IEEE, Washington, DC, pp 3–12

    Google Scholar 

  8. Howlett EM (1992) High-resolution inserts in wide-angle head-mounted stereoscopic displays. In: Merritt JO, Fisher SS (eds) Proceedings of the SPIE, vol 1669, no. 1, pp 193–203

    Google Scholar 

  9. Rolland JP, Yoshida A, Davis LD, Reif JH (1998) High-resolution inset head-mounted display. Appl Opt 37(19):4183–4193

    CrossRef  Google Scholar 

  10. Brown LG, Boger YS (2008) Application of the sensics panoramic HMD. SID symposium digest of technical papers 39:77–80

    CrossRef  Google Scholar 

  11. Hoffman DM, Girshick AR, Akeley K, Banks MS (2008) Vergence accommodation conflicts hinder visual performance and cause visual fatigue. J Vis 8:1–30

    CrossRef  Google Scholar 

  12. Biocca F, Rolland JP (1998) Virtual eyes can rearrange your body: adaptation to visual displacement in see-through head-mounted displays. Presence 7(3):262–278

    CrossRef  Google Scholar 

  13. State A, Keller K, Fuchs H Simulation-based design and rapid prototyping of a parallax-free, orthoscopic video see-through head-mounted display. In: Proceedings international symposium on mixed and augmented reality (ISMAR) 2005, Vienna, pp 28–31

    Google Scholar 

  14. Sutherland IE (1968) A head-mounted three-dimensional display. AFIPS Proc Fall Joint Comput Conf 33:757–764

    Google Scholar 

  15. Rolland JP, Hua H (2005) Head-mounted displays. In: Johnson RB, Driggers RG (eds) Encyclopedia of optical engineering. Taylor and Francis, New York, pp 1–14

    Google Scholar 

  16. Cakmakci O, Rolland JP (2006) Head-worn displays: a review. J Display Technol 2:199–216

    CrossRef  Google Scholar 

  17. Rolland JP, Kaya I, Thompson KP, Cakmakci O (2010) Head-worn displays – Lens design. In: Proceedings of SID, vol 57, 57.3, New York, NY

    Google Scholar 

  18. Chen CW (1996) Helmet visor display employing reflective, refractive, and diffractive optical elements. US Patent 5,526,183 1996

    Google Scholar 

  19. Sweatt WC (1977) Describing holographic optical elements as lenses. JOSA A 67:803–808

    CrossRef  Google Scholar 

  20. Furness T (1995) Virtual retinal display. US Patent 5,467,104 Nov 14 1995

    Google Scholar 

  21. Sisodia A, Bayer AM, Smith PT, Nash B, Little J, Cassarly W, Gupta A (2007) Advanced helmet mounted display (AHMD). In: Brown RW, Reese CE, Marasco PL, Harding TH (eds) Head and Helmet-Mounted Display XII, Proceedings of the SPIE vol 6567. SPIE, pp 6567–65570N

    Google Scholar 

  22. Yaakov A (2003) Substrate-guided optical beam expander. US Patent 6,829,095

    Google Scholar 

  23. Cameron AA (2009) The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays. Proc SPIE 7326:7326H

    Google Scholar 

  24. Yamazaki S, Inoguchi K, Saito Y, Morishima H, Taniguchi N (1999) Thin wide-FOV HMD with free-form-surface prism and applications. In: Stereoscopic Displays and Virtual Reality Systems VI, 3639, Proc. of the SPIE, 3639, 453–462 (1999)

    Google Scholar 

  25. Mukawa H et al (2008) A full color eyewear display using holographic planar waveguides. Proc Soc Info Display 3901:89–92

    Google Scholar 

  26. Hua H, Ha Y, Rolland JP (2003) Design of an ultra-light and compact projection lens. Appl Opt 42(1):97–107

    CrossRef  Google Scholar 

  27. Cakmakci O, Rolland JP (2007) Design and fabrication of a dual-element off-axis near-eye optical magnifier. Opt Lett 32(11):1363–1365

    CrossRef  Google Scholar 

  28. Zhang R, Hua H (2008) Design of a polarized head-mounted projection display using ferroelectric liquid-crystal-on-silicon microdisplays. Appl Opt 47(15):2888–2896

    CrossRef  Google Scholar 

  29. Cakmakci O, Moore B, Foroosh H, Rolland JP (2008) Optimal local shape description for rotationally non-symmetric optical surface design and analysis. Opt Express 16:1583–1589

    CrossRef  Google Scholar 

  30. Cakmakci O, Vo S, Forroosh H, Rolland JP (2008) Application of radial basis functions to shape description in a dual-element off-axis magnifier. Opt Lett 33(11):1237–1239

    CrossRef  Google Scholar 

  31. Cakmakci O, Vo S, Thompson KP, Rolland JP (2008) Application of radial basis functions to shape description in a dual-element off-axis eyewear display: FOV limit. J Soc Inf Display 16(11):1089–1098

    CrossRef  Google Scholar 

  32. Urey H (2003) Retinal scanning displays. In: Driggers R (ed) Encyclopedia of optical engineering. Marcel Dekker, New York

    Google Scholar 

  33. Rolland JP, Davis LD, Baillot Y (2001) A survey of tracking technology for virtual environments. In: Barfield W, Caudell T (eds) Fundamentals of wearable computers and augmented reality. Lawrence Erlbaum, Mahwah, NJ, pp 67–112 (Chapter 3)

    Google Scholar 

  34. Cakmakci O, Thompson KP, Vallee P, Cote J, Rolland JP (2010) Design of a free-form single-element head-worn display. In: Proceedings of the SPIE, vol 7618, pp 7618–03

    Google Scholar 

  35. Kidger M (2001) Fundamentals of optical design. SPIE, Bellingham, pp 26–27

    CrossRef  Google Scholar 

  36. Draper R, Wood M, Radmard B, Mahmud K, Schuler P, Sotzing GA, Seshadri V, Mino W, Padilla J, Otero TF (2005) Electrochromic variable transmission optical combiner. In: Hopper DG, Forsythe EW, Morton DC, Bradford CE, Girolamo HJ (eds) Cockpit and future displays for defense and security, proceedings of SPIE, vol 5801, Bellingham, WA, pp 268–277

    Google Scholar 

  37. Mortimer R, Dyer AL, Reynolds JR (2006) Electrochromic organic and polymeric materials for display applications. Displays 27:2–18

    CrossRef  Google Scholar 

  38. Yoshida A, Rolland JP, Reif JH (1995) Design and applications of a high-resolution insert head-mounted display. In: Proceedings 1995 virtual reality annual international symposium (VRAIS 1995), Seattle, pp 84–93

    Google Scholar 

  39. Melzer JE (2001) Design evolution of a wide FOV head-mounted display for aircraft training and simulation. In: Lewandowski RJ, Haworth LA, Girolamo HJ, Rash CE (eds) Helmet- and head-mounted display VI, Proceedings of SPIE, vol 4361, Orlando

    Google Scholar 

  40. Hoppe M, Melzer J (1999) Optical tiling for wide FOV head-mounted displays. In: Proceedings SPIE conference on current developments in optical design and optical engineering VIII. SPIE, Denver

    Google Scholar 

  41. Edwards E, Rolland JP, Keller K (1993) Video see-through design for merging of real and virtual environments. In: Proceedings of IEEE virtual reality annual international symposium (VRAIS 1993), Seattle, pp 223–233

    CrossRef  Google Scholar 

  42. Urey H, Chellappan KV, Erden E, Surman P (2011) State of the art in stereoscopic and autostereoscopic displays. Proc IEEE 99(4):540–555

    CrossRef  Google Scholar 

  43. Heilig M (1962) Sensorama simulator. US Patent 3,050,870, 28 Aug 1962

    Google Scholar 

  44. Ferrari V, Megali G, Troia E, Pietrabissa A, Mosca F (2009) A 3-D mixed-reality system for stereoscopic visualization of medical dataset. IEEE Trans Biomed Eng 56(11):2627–2633

    CrossRef  Google Scholar 

  45. Fisher R (1996) Head-mounted projection display system featuring beam splitter and method of making same. US Patent 5,572,229, 5 Nov 1996

    Google Scholar 

  46. Kijima R, Ojika T (1997) Transition between virtual environment and workstation environment with projective head-mounted display. In: Virtual reality annual international symposium (VRAIS’97). IEEE Computer Society, Los Alamitos, CA, pp 130–137

    Google Scholar 

  47. Hua H, Ha Y, Rolland JP (2003) Design of an ultra-light and compact projection lens. Appl Opt 42(1):97–107

    CrossRef  Google Scholar 

  48. Martins R, Shaoulov V, Ha Y, Rolland JP (2007) A mobile head-worn projection display. Opt Express 15:14530–14538

    CrossRef  Google Scholar 

  49. Rolland JP, Biocca F, Hamza-Lup F, Ha Y, Martins R (2005) Development of head-mounted projection displays for distributed, collaborative augmented reality applications. Presence SI Immers Proj Technol 14(5):528–549

    Google Scholar 

  50. Rolland JP, Biocca F, Hua H, Ya H, Gao C, Harrisson O (2004) Teleportal augmented reality system: Integrating virtual objects, remote collaborators, and physical reality for distributed networked manufacturing. In: Ong SK, Nee AYC (eds) Virtual and augmented reality applications in manufacturing. Springer, London, p 183 (chapter 11)

    Google Scholar 

  51. Yalcinkaya A, Urey H, Brown D, Montague T, Sprague R (2006) Two-axis electromagnetic microscanner for high resolution displays. J Microelectromechanical Syst 15(4):786–794

    CrossRef  Google Scholar 

  52. De Wit GC (1997) A retinal scanning display for virtual reality. Ph.D. Thesis. Delft University of Technology

    Google Scholar 

  53. Urey H et al (2005) Vibration mode frequency formulae for micromechanical scanners. J Micromech Microeng 15:1713–1721

    CrossRef  Google Scholar 

  54. Brewster D (1958) The Kaleidoscope: its history, theory, and construction. John Murray, London

    Google Scholar 

  55. Urey H (2001) Diffractive exit-pupil expander for display applications. Appl Opt 40(32):5840–5851

    CrossRef  Google Scholar 

  56. Urey H, Powell KD (2005) Microlens-array-based exit-pupil expander for full-color displays. Appl Opt 44(23):4930–4936

    CrossRef  Google Scholar 

  57. Rolland JP (2000) Wide angle, off-axis, see-through head-mounted display. Opt Eng (Special Issue on Pushing the Envelope in Optical Design Software. 39(7):1760–1767

    Google Scholar 

Further Reading

  • Barfield W, Caudell T (2001) Fundamentals of wearable computers and augmented reality. Lawrence Erlbaum, Mahwah

    Google Scholar 

  • Chellephan KV, Erden E, Urey H (2010) Laser based displays: a review. Appl Opt 49(25):F79–F98 (Feature issue on Lasers: the first fifty years)

    CrossRef  Google Scholar 

  • Kalawsky RS (1993) The science of virtual reality and virtual environments. Addison-Wesley, Boston

    Google Scholar 

  • Peli E, Vargas-Martin F (2008) In-the-spectacle-lens telescopic device. J Biomed Opt 13(3):034027

    CrossRef  Google Scholar 

  • Rash CE (2001) Helmet-mounted displays: design issues for rotary-wing aircraft. SPIE Press, Washington

    Google Scholar 

  • Reiss M (1945) The Cos4 law of illumination. JOSA 35(4):283–288

    CrossRef  MathSciNet  Google Scholar 

  • Santhanam AP, Willoughby TR, Kaya I, Shah AP, Meeks SL, Rolland JP, Kupelian P (2008) A display framework for visualizing real-time 3D lung tumor radiotherapy. J Display Technol 4(4):473–482 (Special issue on medical displays)

    CrossRef  Google Scholar 

  • Task HL (1997) HMD image source, optics, and the visual interface. In: Melzer JE, Moffitt K (eds) Head mounted displays: designing for the user. McGraw-Hill, New York, pp 55–82 Chapter 3

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jannick P. Rolland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Rolland, J.P., Thompson, K.P., Urey, H., Thomas, M. (2012). See-Through Head Worn Display (HWD) Architectures. In: Chen, J., Cranton, W., Fihn, M. (eds) Handbook of Visual Display Technology. Springer, Berlin, Heidelberg.

Download citation