Skip to main content

K1 Radiation of Surfaces

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Introduction

All substances, regardless of shape and consistency, emit and absorb radiation energy when their temperature is above absolute zero (T > 0 K). For nontransparent opaque bodies, the absorption and emission processes are confined to their surfaces. Thermal radiation energy can be regarded as electromagnetic waves carrying energy and entropy in the wavelength range between 0.1 μm and about 1000 μm (0.1 μm < λ<1000 μm). Because of these emission and absorption processes in all substances (solids, liquids, and gases) around there will be a net transfer of energy between those bodies which face each other and whose surfaces have different temperatures. This net thermal radiation energy is, from a thermodynamic view, a heat flux, as its only driving force is a temperature difference and as it carries entropy. In thermal equilibrium situations, the emission and absorption processes still exist, but the net radiation energy will be zero. The calculation of thermal radiation...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

5 Bibliography

  1. Modest M (2003) Radiative heat transfer, 2nd edn. Academic Press, Amsterdam

    MATH  Google Scholar 

  2. Mahan J (2002) Radiation heat transfer: a statistical approach. Wiley, New York

    Google Scholar 

  3. Siegel R, Howell JR (2002) Thermal radiation heat transfer, 4th edn. Taylor & Francis, New York

    Google Scholar 

  4. Brewster MQ (1992) Thermal radiative transfer and properties. John Wiley & Sons, New York

    Google Scholar 

  5. Baehr H-D, Stephan K (2006) Heat and mass transfer, 2nd rev. edn., chapt. 5. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Planck M (1901) Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik 4:553–563

    Article  MATH  Google Scholar 

  7. Jordan EC (1968) Electromagnetic waves and radiating systems, 2nd edn. Prentice- Hall, London

    MATH  Google Scholar 

  8. Dimmena RA, Buckius RO (1994) Electromagnetic theory predictions of the directional scattering from triangular surfaces. J Heat Trans 116:S.639–S.645

    Article  Google Scholar 

  9. Touloukian YS (1962) Thermophysical properties of matter. Vols. 7–9. IFI Plenum, New York. Tables of emissivity of surfaces. Int J Heat Mass Trans 5:67–76

    Google Scholar 

  10. Gubareff, J, Torborg(1960) Thermal radiation properties. Honeywell Research Center, Minneapolis, MN

    Google Scholar 

  11. Sala A (1986) Radiant properties of materials. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  12. Kirchhoff R (1999) Bestimmung der spektralen Emissionsgrade feuerfester Baustoffe und keramischer Spezialerzeugnisse. Cuvillier Verlag, Goettingen

    Google Scholar 

  13. Landolt- B (1985) Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Vol. 15, Springer, Berlin

    MATH  Google Scholar 

  14. Kabelac S (1994) Thermodynamik der Strahlung. F. Vieweg & Sohn, Braunschweig

    Book  Google Scholar 

  15. Vortmeyer D (1966) Fortschr.- Ber. VDI, Reihe 3, Nr. 9; Habilitation Thesis from July 28th, 1965. Düsseldorf: VDI- Verlag, 1966. See also: Vortmeyer, D.: Chem Ing Techn 38:404

    Google Scholar 

  16. Vortmeyer D (1980) Radiation in packed solids. Germ Chem Eng 3:124–138

    Google Scholar 

  17. Sparrow EM, Cess RD (1970) Radiation heat transfer. Brooks/Cole Publishing Co, Belmont/Calif

    Google Scholar 

  18. Vortmeyer D, Börner B (1966) Emissionsgrade aufgrund von Hohlräumen. Chem Ing Tech 38:1077–1079

    Article  Google Scholar 

  19. Kast W (1965) Fortschr.- Ber. VDI, Reihe 6, Nr. 5. VDI- Verlag, Düsseldorf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Kabelac, S., Vortmeyer, D. (2010). K1 Radiation of Surfaces. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_64

Download citation

Publish with us

Policies and ethics