Skip to main content

Degradation of Polycyclic Aromatic Hydrocarbons by Fungi

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Many fungi metabolize polycyclic aromatic hydrocarbons with enzymes that include lignin peroxidase, manganese peroxidase, laccase, cytochrome P450, and epoxide hydrolase. The products include trans-dihydrodiols, phenols, quinones, dihydrodiol epoxides, and tetraols, which may be conjugated to form glucuronides, glucosides, xylosides, and sulfates. The fungal metabolites generally are less toxic than the parent hydrocarbons. Cultures of fungi that degrade polycyclic aromatic hydrocarbons may be useful for bioremediation of contaminated soils, sediments, and waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson BE, Henrysson T (1996) Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi. Appl Microbiol Biotechnol 46: 647–652.

    CAS  Google Scholar 

  • Andersson BE, Lundstedt S, Tornberg K, Schnürer Y, Öberg LG, Mattiasson B (2003) Incomplete degradation of polycyclic aromatic hydrocarbons in soil inoculated with wood-rotting fungi and their effect on the indigenous soil bacteria. Environ Toxicol Chem 22: 1238–1243.

    PubMed  CAS  Google Scholar 

  • Anh DH, Ullrich R, Benndorf D, Svatoś A, Muck A, Hofrichter M (2007) The coprophilous mushroom Coprinus radians secretes a haloperoxidase that catalyzes aromatic peroxygenation. Appl Environ Microbiol 73: 5477–5485.

    PubMed  CAS  Google Scholar 

  • Anyakora C (ed.) (2007) Environmental Impact of Polynuclear Aromatic Hydrocarbons. Kerala: Research Signpost.

    Google Scholar 

  • Atlas RM, Cerniglia CE (1995) Bioremediation of petroleum pollutants: diversity and environmental aspects of hydrocarbon biodegradation. BioScience 45: 332–339.

    Google Scholar 

  • Baborová P, Möder M, Baldrian P, Cajthamlová K, Cajthaml T (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157: 248–253.

    PubMed  Google Scholar 

  • Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadražil F (2000) Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol 66: 2471–2478.

    PubMed  CAS  Google Scholar 

  • Barclay CD, Farquhar GF, Legge RL (1995) Biodegradation and sorption of polyaromatic hydrocarbons by Phanerochaete chrysosporium. Appl Microbiol Biotechnol 42: 958–963.

    PubMed  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1996a) Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62: 292–295.

    PubMed  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63: 2495–2501.

    PubMed  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996b) Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62: 2547–2553.

    PubMed  Google Scholar 

  • Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996c) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62: 2554–2559.

    PubMed  CAS  Google Scholar 

  • Bhatt M, Cajthaml T, Šašek V (2002) Mycoremediation of PAH-contaminated soil. Folia Microbiol 47: 255–258.

    CAS  Google Scholar 

  • Bogan BW, Lamar RT (1996) Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol 62: 1597–1603.

    PubMed  CAS  Google Scholar 

  • Bogan BW, Lamar RT, Burgos WD, Tien M (1999) Extent of humification of anthracene, fluoranthene, and benzo[a]pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Lett Appl Microbiol 28: 250–254.

    CAS  Google Scholar 

  • Bogan BW, Lamar RT, Hammel KE (1996) Fluorene oxidation in vivo by Phanerochaete chrysosporium and in vitro during manganese peroxidase-dependent lipid peroxidation. Appl Environ Microbiol 62: 1788–1792.

    PubMed  CAS  Google Scholar 

  • Böhmer S, Messner K, Srebotnik E (1998) Oxidation of phenanthrene by a fungal laccase in the presence of 1-hydroxybenzotriazole and unsaturated lipids. Biochem Biophys Res Commun 244: 233–238.

    PubMed  Google Scholar 

  • Boonchan S, Britz ML, Stanley GA (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures. Appl Environ Microbiol 66: 1007–1019.

    PubMed  CAS  Google Scholar 

  • Braun-Lüllemann A, Hüttermann A, Majcherczyk A (1999) Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 53: 127–132.

    Google Scholar 

  • Bressler DC, Fedorak PM, Pickard MA (2000) Oxidation of carbazole, N-ethylcarbazole, fluorene, and dibenzothiophene by the laccase of Coriolopsis gallica. Biotechnol Lett 22: 1119–1125.

    CAS  Google Scholar 

  • Bumpus JA (1989) Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol 55: 154–158.

    PubMed  CAS  Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228: 1434–1436.

    PubMed  CAS  Google Scholar 

  • Cajthaml T, Erbanová P, Šašek V, Moeder M (2006) Breakdown products on metabolic pathway of degradation of benz[a]anthracene by a ligninolytic fungus. Chemosphere 64: 560–564.

    PubMed  CAS  Google Scholar 

  • Cajthaml T, Möder M, Kačer P, Šašek V, Popp P (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974: 213–222.

    PubMed  CAS  Google Scholar 

  • Cambria MT, Minniti Z, Librando V, Cambria A (2008) Degradation of polycyclic aromatic hydrocarbons by Rigidoporus lignosus and its laccase in the presence of redox mediators. Appl Biochem Biotechnol 149: 1–8.

    PubMed  CAS  Google Scholar 

  • Canet R, Birnstingl JG, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Biores Technol 76: 113–117.

    CAS  Google Scholar 

  • Canet R, Lopez-Real JM, Beck AJ (1999) Overview of polycyclic aromatic hydrocarbon biodegradation by white-rot fungi. Land Contam Reclam 7: 191–197.

    Google Scholar 

  • Capotorti G, Cesti P, Lombardi A, Guglielmetti G (2005) Formation of sulfate conjugates metabolites in the degradation of phenanthrene, anthracene, pyrene and benzo[a]pyrene by the ascomycete Aspergillus terreus. Polycycl Aromat Compd 25: 197–213.

    CAS  Google Scholar 

  • Capotorti G, Digianvincenzo P, Cesti P, Bernardi A, Guglielmetti G (2004) Pyrene and benzo[a]pyrene metabolism by an Aspergillus terreus strain isolated from a polycylic aromatic hydrocarbons polluted soil. Biodegradation 15: 79–85.

    PubMed  CAS  Google Scholar 

  • Casillas RP, Crow SA, Heinze TM, Deck J, Cerniglia CE (1996) Initial oxidative and subsequent conjugative metabolites produced during the metabolism of phenanthrene by fungi. J Ind Microbiol 16: 205–215.

    PubMed  CAS  Google Scholar 

  • Cerniglia CE (1982) Initial reactions in the oxidation of anthracene by Cunninghamella elegans. J Gen Microbiol 128: 2055–2061.

    CAS  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4: 331–338.

    CAS  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19: 324–333.

    PubMed  CAS  Google Scholar 

  • Cerniglia CE, Dodge RH, Gibson DT (1980) Studies on the fungal oxidation of polycyclic aromatic hydrocarbons. Bot Mar 23: 121–124.

    CAS  Google Scholar 

  • Cerniglia CE, Freeman JP, Mitchum RK (1982) Glucuronide and sulfate conjugation in the fungal metabolism of aromatic hydrocarbons. Appl Environ Microbiol 43: 1070–1075.

    PubMed  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol 34: 363–370.

    PubMed  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT (1979) Oxidation of benzo[a]pyrene by the filamentous fungus Cunninghamella elegans. J Biol Chem 254: 12174–12180.

    PubMed  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT, Dodge RH (1994) Metabolism of benz[a]anthracene by the filamentous fungus Cunninghamella elegans. Appl Environ Microbiol 60: 3931–3938.

    PubMed  CAS  Google Scholar 

  • Cerniglia CE, Hebert RL, Szaniszlo PJ, Gibson DT (1978) Fungal transformation of naphthalene. Arch Microbiol 117: 135–143.

    PubMed  CAS  Google Scholar 

  • Cerniglia CE, Kelly DW, Freeman JP, Miller DW (1986) Microbial metabolism of pyrene. Chem-Biol Interact 57: 203–216.

    PubMed  CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2001) Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In Fungi in Bioremediation. GM Gadd (ed.). Cambridge, UK: Cambridge University Press, pp. 136–187.

    Google Scholar 

  • Cerniglia CE, Sutherland JB (2006) Relative roles of bacteria and fungi in polycyclic aromatic hydrocarbon biodegradation and bioremediation of contaminated soils. In Fungi in Biogeochemical Cycles. GM Gadd (ed.). Cambridge, UK: Cambridge University Press, pp. 182–211.

    Google Scholar 

  • Cerniglia CE, Yang SK (1984) Stereoselective metabolism of anthracene and phenanthrene by the fungus Cunninghamella elegans. Appl Environ Microbiol 47: 119–124.

    PubMed  CAS  Google Scholar 

  • Chang BV, Shiung LC, Yuan SY (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48: 717–724.

    PubMed  CAS  Google Scholar 

  • Chulalaksananukul S, Gadd GM, Sangvanich P, Sihanonth P, Piapukiew J, Vangnai AS (2006) Biodegradation of benzo[a]pyrene by a newly isolated Fusarium sp. FEMS Microbiol Lett 262: 99–106.

    PubMed  CAS  Google Scholar 

  • Clemente AR, Anazawa TA, Durrant LR (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz J Microbiol 32: 255–261.

    CAS  Google Scholar 

  • Collins PJ, Dobson ADW (1996) Oxidation of fluorene and phenanthrene by Mn(II) dependent peroxidase activity in whole cultures of Trametes (Coriolus) versicolor. Biotechnol Lett 18: 801–804.

    CAS  Google Scholar 

  • Collins PJ, Kotterman MJJ, Field JA, Dobson ADW (1996) Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versicolor. Appl Environ Microbiol 62: 4563–4567.

    PubMed  CAS  Google Scholar 

  • Colombo JC, Cabello M, Arambarri AM (1996) Biodegradation of aliphatic and aromatic hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolitic fungi. Environ Pollut 94: 355–362.

    PubMed  CAS  Google Scholar 

  • Corgié SC, Fons F, Beguiristain T, Leyval C (2006) Biodegradation of phenanthrene, spatial distribution of bacterial populations and dioxygenase expression in the mycorrhizosphere of Lolium perenne inoculated with Glomus mosseae. Mycorrhiza 16: 207–212.

    PubMed  Google Scholar 

  • Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148: 3737–3741.

    PubMed  CAS  Google Scholar 

  • da Silva M, Cerniglia CE, Pothuluri JV, Canhos VP, Esposito E (2003) Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J Microbiol Biotechnol 19: 399–405.

    CAS  Google Scholar 

  • Datta D, Samanta TB (1988) Effect of inducers on metabolism of benzo[a]pyrene in vivo and in vitro: analysis by high pressure liquid chromatography. Biochem Biophys Res Commun 155: 493–502.

    PubMed  CAS  Google Scholar 

  • Davis MW, Glaser JA, Evans JW, Lamar RT (1993) Field evaluation of the lignin-degrading fungus Phanerochaete sordida to treat creosote-contaminated soil. Environ Sci Technol 27: 2572–2576.

    CAS  Google Scholar 

  • Doddapaneni H, Subramanian V, Yadav JS (2005) Physiological regulation, xenobiotic induction, and heterologous expression of P450 monooxygenase gene pc-3 (CYP63A3), a new member of the CYP63 gene cluster in the white-rot fungus Phanerochaete chrysosporium. Curr Microbiol 50: 292–298.

    PubMed  CAS  Google Scholar 

  • Doddapaneni H, Yadav JS (2004) Differential regulation and xenobiotic induction of tandem P450 monooxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 65: 559–565.

    PubMed  CAS  Google Scholar 

  • Eggen T (1999) Application of fungal substrate from commercial mushroom production–Pleurotus ostreatus–for bioremediation of creosote contaminated soil. Int Biodeterior Biodegrad 44: 117–126.

    CAS  Google Scholar 

  • Eggen T, Majcherczyk A (1998) Removal of polycyclic aromatic hydrocarbons (PAH) in contaminated soil by white rot fungus Pleurotus ostreatus. Int Biodeterior Biodegrad 41: 111–117.

    CAS  Google Scholar 

  • Eggen T, Sveum P (1999) Decontamination of aged creosote polluted soil: the influence of temperature, white rot fungus Pleurotus ostreatus, and pre-treatment. Int Biodeterior Biodegrad 43: 125–133.

    CAS  Google Scholar 

  • Eibes G, Moreira MT, Feijoo G, Daugulis AJ, Lema JM (2007) Operation of a two-phase partitioning bioreactor for the oxidation of anthracene by the enzyme manganese peroxidase. Chemosphere 66: 1744–1751.

    PubMed  CAS  Google Scholar 

  • Engler KH, Kelly SL, Coker RD, Evans IH (2000) Toxin-binding properties of cytochrome P450 in Saccharomyces cerevisiae and Kluyveromyces marxianus. Biotechnol Lett 22: 3–8.

    CAS  Google Scholar 

  • Faber BW, Schonewille ABJA, van Gorcom RFM, Duine JA (2001) Constitutive and inducible hydroxylase activities involved in the degradation of naphthalene by Cunninghamella elegans. Appl Microbiol Biotechnol 55: 486–491.

    PubMed  CAS  Google Scholar 

  • Ferris JP, Fasco MJ, Stylianopoulou FL, Jerina DM, Daly JW, Jeffrey AM (1973) Monooxygenase activity in Cunninghamella bainieri: evidence for a fungal system similar to liver microsomes. Arch Biochem Biophys 156: 97–103.

    PubMed  CAS  Google Scholar 

  • Field JA, Boelsma F, Baten H, Rulkens WH (1995) Oxidation of anthracene in water/solvent mixtures by the white-rot fungus, Bjerkandera sp. strain BOS55. Appl Microbiol Biotechnol 44: 234–240.

    CAS  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN (1997) Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 276: 1045–1052.

    PubMed  CAS  Google Scholar 

  • Garon D, Krivobok S, Seigle-Murandi F (2000) Fungal degradation of fluorene. Chemosphere 40: 91–97.

    PubMed  CAS  Google Scholar 

  • Garon D, Krivobok S, Wouessidjewe D, Seigle-Murandi F (2002) Influence of surfactants on solubilization and fungal degradation of fluorene. Chemosphere 47: 303–309.

    PubMed  CAS  Google Scholar 

  • Garon D, Sage L, Seigle-Murandi F (2004) Effects of fungal bioaugmentation and cyclodextrin amendment on fluorene degradation in soil slurry. Biodegradation 15: 1–8.

    PubMed  CAS  Google Scholar 

  • Gauthier E, Déziel E, Villemur R, Juteau P, Lépine F, Beaudet R (2003) Initial characterization of new bacteria degrading high-molecular weight polycyclic aromatic hydrocarbons isolated from a 2-year enrichment in a two-liquid-phase culture system. J Appl Microbiol 94: 301–311.

    PubMed  CAS  Google Scholar 

  • Giraud F, Guiraud P, Kadri M, Blake G, Steiman R (2001) Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res 35: 4126–4136.

    PubMed  CAS  Google Scholar 

  • Gómez J, Rodríguez Solar D, Pazos M, Ángeles Sanromán M (2006) Applicability of Coriolopsis rigida for biodegradation of polycyclic aromatic hydrocarbons. Biotechnol Lett 28: 1013–1017.

    PubMed  Google Scholar 

  • Gramss G, Kirsche B, Voigt K-D, Günther T, Fritsche W (1999a) Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycol Res 103: 1009–1018.

    CAS  Google Scholar 

  • Gramss G, Voigt KD, Kirsche B (1999b) Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation 10: 51–62.

    PubMed  CAS  Google Scholar 

  • Grotenhuis T, Field J, Wasseveld R, Rulkens W (1998) Biodegradation of polyaromatic hydrocarbons (PAH) in polluted soil by the white-rot fungus Bjerkandera. J Chem Technol Biotechnol 71: 359–360.

    CAS  Google Scholar 

  • Guiraud P, Bonnet JL, Boumendjel A, Kadri-Dakir M, Dusser M, Bohatier J, Steiman R (2008) Involvement of Tetrahymena pyriformis and selected fungi in the elimination of anthracene, and toxicity assessment of the biotransformation products. Ecotoxicol Environ Saf 69: 296–305.

    PubMed  CAS  Google Scholar 

  • Günther T, Sack U, Hofrichter M, Lätz M (1998) Oxidation of PAH and PAH-derivatives by fungal and plant oxidoreductases. J Basic Microbiol 38: 113–122.

    Google Scholar 

  • Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67: 225–243.

    PubMed  CAS  Google Scholar 

  • Haemmerli SD, Leisola MSA, Sanglard D, Fiechter A (1986) Oxidation of benzo[a]pyrene by extracellular ligninases of Phanerochaete chrysosporium: veratryl alcohol and stability of ligninase. J Biol Chem 261: 6900–6903.

    PubMed  CAS  Google Scholar 

  • Hallett PD, White NA, Ritz K (2006) Impact of basidiomycete fungi on the wettability of soil contaminated with a hydrophobic polycyclic aromatic hydrocarbon. Biologia 61(Suppl. 19): S334–S338.

    CAS  Google Scholar 

  • Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by ligninolytic fungi. Environ Health Perspect 103(Suppl. 5): 41–43.

    PubMed  CAS  Google Scholar 

  • Hammel KE, Gai WZ, Green B, Moen MA (1992) Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol 58: 1832–1838.

    PubMed  CAS  Google Scholar 

  • Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci USA 88: 10605–10608.

    PubMed  CAS  Google Scholar 

  • Hammel KE, Kalyanaraman B, Kirk TK (1986) Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem 261: 16948–16952.

    PubMed  CAS  Google Scholar 

  • Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8: 268–273.

    PubMed  CAS  Google Scholar 

  • Harvey RG (1997) Polycyclic Aromatic Hydrocarbons. Hoboken, NJ: Wiley.

    Google Scholar 

  • Hesham AE-L, Wang Z, Zhang Y, Zhang J, Lv W, Yang M (2006) Isolation and identification of a yeast strain capable of degrading four and five ring aromatic hydrocarbons. Ann Microbiol 56: 109–112.

    CAS  Google Scholar 

  • Hestbjerg H, Willumsen PA, Christensen M, Andersen O, Jacobsen CS (2003) Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 22: 692–698.

    PubMed  CAS  Google Scholar 

  • Hiratsuka N, Oyadomari M, Shinohara H, Tanaka H, Wariishi H (2005) Metabolic mechanisms involved in hydroxylation reactions of diphenyl compounds by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Biochem Eng J 23: 241–246.

    CAS  Google Scholar 

  • in der Wiesche C, Martens R, Zadražil F (1996) Two-step degradation of pyrene by white-rot fungi and soil microorganisms. Appl Microbiol Biotechnol 46: 653–659.

    PubMed  CAS  Google Scholar 

  • Jiang C, Alexander R, Kagi RI, Murray AP (2000) Origin of perylene in ancient sediments and its geological significance. Org Geochem 31: 1545–1559.

    CAS  Google Scholar 

  • Johannes C, Majcherczyk A (2000) Natural mediators in the oxidation of polycyclic aromatic hydrocarbons by laccase mediator systems. Appl Environ Microbiol 66: 524–528.

    PubMed  CAS  Google Scholar 

  • Johannes C, Majcherczyk A, Hüttermann A (1996) Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl Microbiol Biotechnol 46: 313–317.

    PubMed  CAS  Google Scholar 

  • Johannes C, Majcherczyk A, Hüttermann A (1998) Oxidation of acenaphthene and acenaphthylene by laccase of Trametes versicolor in a laccase-mediator system. J Biotechnol 61: 151–156.

    CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45: 57–88.

    CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182: 2059–2067.

    PubMed  CAS  Google Scholar 

  • Kelly SL, Lamb DC, Kelly DE (1997) Sterol 22-desaturase, cytochrome P45061, possesses activity in xenobiotic metabolism. FEBS Lett 412: 233–235.

    PubMed  CAS  Google Scholar 

  • Kiehlmann E, Pinto L, Moore M (1996) The biotransformation of chrysene to trans-1,2-dihydroxy-1,2-dihydrochrysene by filamentous fungi. Can J Microbiol 42: 604–608.

    CAS  Google Scholar 

  • Kim J-D, Lee C-G (2007) Microbial degradation of polycyclic aromatic hydrocarbons in soil by bacterium-fungus co-cultures. Biotechnol Bioprocess Eng 12: 410–416.

    CAS  Google Scholar 

  • Koivula TT, Salkinoja-Salonen M, Peltola R, Romantschuk M (2004) Pyrene degradation in forest humus microcosms with or without pine and its mycorrhizal fungus. J Environ Qual 33: 45–53.

    PubMed  CAS  Google Scholar 

  • Kotterman MJJ, Rietberg H-J, Hage A, Field JA (1998) Polycyclic aromatic hydrocarbon oxidation by the white-rot fungus Bjerkandera sp. strain BOS55 in the presence of nonionic surfactants. Biotechnol Bioeng 57: 220–227.

    PubMed  CAS  Google Scholar 

  • Kotterman MJJ, Wasseveld RA, Field JA (1996) Hydrogen peroxide production as a limiting factor in xenobiotic compound oxidation by nitrogen-sufficient cultures of Bjerkandera sp. strain BOS55 overproducing peroxidases. Appl Environ Microbiol 62: 880–885.

    PubMed  CAS  Google Scholar 

  • Lahav R, Fareleira P, Nejidat A, Abeliovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microbial Ecol 43: 388–396.

    CAS  Google Scholar 

  • Lambert M, Kremer S, Sterner O, Anke H (1994) Metabolism of pyrene by the basidiomycete Crinipellis stipitaria and identification of pyrenequinones and their hydroxylated precursors in strain JK375. Appl Environ Microbiol 60: 3597–3601.

    PubMed  CAS  Google Scholar 

  • Lang E, Nerud F, Novotná E, Zadražil F, Martens R (1996) Production of ligninolytic exoenzymes and 14C-pyrene mineralization by Pleurotus sp. in lignocellulose substrate. Folia Microbiol 41: 489–493.

    CAS  Google Scholar 

  • Lange B, Kremer S, Sterner O, Anke H (1994) Pyrene metabolism in Crinipellis stipitaria: identification of trans-4,5-dihydro-4,5-dihydroxypyrene and 1-pyrenylsulfate in strain JK364. Appl Environ Microbiol 60: 3602–3607.

    PubMed  CAS  Google Scholar 

  • Lange B, Kremer S, Sterner O, Anke H (1996) Metabolism of pyrene by basidiomycetous fungi of the genera Crinipellis, Marasmius, and Marasmiellus. Can J Microbiol 42: 1179–1183.

    CAS  Google Scholar 

  • Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52: 1539–1546.

    PubMed  CAS  Google Scholar 

  • Launen L, Pinto L, Wiebe C, Kiehlmann E, Moore M (1995) The oxidation of pyrene and benzo[a]pyrene by nonbasidiomycete soil fungi. Can J Microbiol 41: 477–488.

    PubMed  CAS  Google Scholar 

  • Leonardi V, Šašek V, Petruccioli M, D’Annibale A, Erbanová P, Cajthaml T (2007) Bioavailability modification and fungal biodegradation of PAHs in aged industrial soils. Int Biodeterior Biodegrad 60: 165–170.

    CAS  Google Scholar 

  • Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho N-S, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27: 175–185.

    PubMed  CAS  Google Scholar 

  • Levin L, Viale A, Forchiassin A (2003) Degradation of organic pollutants by the white rot basidiomycete Trametes trogii. Int Biodeter Biodegrad 52: 1–5.

    CAS  Google Scholar 

  • Lisowska K, Długoński J (1999) Removal of anthracene and phenanthrene by filamentous fungi capable of cortexolone 11-hydroxylation. J Basic Microbiol 39: 117–125.

    PubMed  CAS  Google Scholar 

  • Lisowska K, Długoński J (2003) Concurrent corticosteroid and phenanthrene transformation by filamentous fungus Cunninghamella elegans. J Steroid Biochem Mol Biol 85: 63–69.

    PubMed  CAS  Google Scholar 

  • Lisowska K, Długoński J, Freeman JP, Cerniglia CE (2006) The effect of the corticosteroid hormone cortexolone on the metabolites produced during phenanthrene biotransformation in Cunninghamella elegans. Chemosphere 64: 1499–1506.

    PubMed  CAS  Google Scholar 

  • Lisowska K, Pałecz B, Długoński J (2004) Microcalorimetry as a possible tool for phenanthrene toxicity evaluation to eukaryotic cells. Thermochim Acta 411: 181–186.

    CAS  Google Scholar 

  • Liu SL, Luo YM, Cao ZH, Wu LH, Ding KQ, Christie P (2004) Degradation of benzo[a]pyrene in soil with arbuscular mycorrhizal alfalfa. Environ Geochem Health 26: 285–293.

    PubMed  CAS  Google Scholar 

  • Löser C, Seidel H, Zehnsdorf A, Hoffmann P (2000) Improvement of the bioavailability of hydrocarbons by applying nonionic surfactants during the microbial remediation of a sandy soil. Acta Biotechnol 20: 99–118.

    Google Scholar 

  • MacGillivray AR, Shiaris MP (1993) Biotransformation of polycyclic aromatic hydrocarbons by yeasts isolated from coastal sediments. Appl Environ Microbiol 59: 1613–1618.

    PubMed  CAS  Google Scholar 

  • Majcherczyk A, Johannes C (2000) Radical mediated indirect oxidation of a PEG-coupled polycyclic aromatic hydrocarbon (PAH) model compound by fungal laccase. Biochim Biophys Acta 1474: 157–162.

    PubMed  CAS  Google Scholar 

  • Majcherczyk A, Johannes C, Hüttermann A (1998) Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzyme Microb Technol 22: 335–341.

    CAS  Google Scholar 

  • Mamilov AS, Byzov BA, Zvyagintsev DG, Dilly OM (2001) Predation on fungal and bacterial biomass in a soddy-podzolic soil amended with starch, wheat straw and alfalfa meal. Appl Soil Ecol 16: 131–139.

    Google Scholar 

  • Martens R, Zadražil F (1998) Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol 43: 97–103.

    CAS  Google Scholar 

  • Masaphy S, Lamb DC, Kelly SL (1999) Purification and characterization of a benzo[a]pyrene hydroxylase from Pleurotus pulmonarius. Biochem Biophys Res Commun 266: 326–329.

    Google Scholar 

  • Masaphy S, Levanon D, Henis Y, Venkateswarlu K, Kelly SL (1996) Evidence for cytochrome P-450 and P-450-mediated benzo[a]pyrene hydroxylation in the white rot fungus Phanerochaete chrysosporium. FEMS Microbiol Lett 135: 51–55.

    PubMed  CAS  Google Scholar 

  • Mastral AM, Callén MS (2000) A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environ Sci Technol 34: 3051–3057.

    CAS  Google Scholar 

  • Mastrangelo G, Fadda E, Marzia V (1996) Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 104: 1166–1170.

    PubMed  CAS  Google Scholar 

  • May R, Schröder P, Sandermann H (1997) Ex-situ process for treating PAH-contaminated soil with Phanerochaete chrysosporium. Environ Sci Technol 31: 2626–2633.

    CAS  Google Scholar 

  • Meléndez-Estrada J, Amezcua-Allieri MA, Alvarez PJJ, Rodríguez-Vázquez R (2006) Phenanthrene removal by Penicillium frequentans grown on a solid-state culture: effect of oxygen concentration. Environ Technol 27: 1073–1080.

    PubMed  Google Scholar 

  • Miller KP, Ramos KS (2001) Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab Rev 33: 1–35.

    PubMed  CAS  Google Scholar 

  • Moen MA, Hammel KE (1994) Lipid-peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol 60: 1956–1961.

    PubMed  CAS  Google Scholar 

  • Mollea C, Bosco F, Ruggeri B (2005) Fungal biodegradation of naphthalene: microcosms studies. Chemosphere 60: 636–643.

    PubMed  CAS  Google Scholar 

  • Mori T, Kitano S, Kondo R (2003) Biodegradation of chloronaphthalenes and polycyclic aromatic hydrocarbons by the white-rot fungus Phlebia lindtneri. Appl Microbiol Biotechnol 61: 380–383.

    PubMed  CAS  Google Scholar 

  • Mougin C (2002) Bioremediation and phytoremediation of industrial PAH-polluted soils. Polycycl Aromat Compd 22: 1011–1043.

    CAS  Google Scholar 

  • Mougin C, Jolivalt C, Malosse C, Chaplain V, Sigoillot J-C, Asther M (2002) Interference of soil contaminants with laccase activity during the transformation of complex mixtures of polycyclic aromatic hydrocarbons in liquid media. Polycycl Aromat Compd 22: 673–688.

    CAS  Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In Bioremediation: Principles and Applications. RL Crawford and DL Crawford (ed.). Cambridge, UK: Cambridge University Press, pp. 125–194.

    Google Scholar 

  • Nemergut DR, Wunch KG, Johnson RM, Bennett JW (2000) Benzo[a]pyrene removal by Marasmiellus troyanus in soil microcosms. J Ind Microbiol Biotechnol 25: 116–119.

    CAS  Google Scholar 

  • Novotny Č, Erbanová P, Cajthaml T, Rothschild N, Dosoretz C, Šašek V (2000) Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl Microbiol Biotechnol 54: 850–853.

    PubMed  CAS  Google Scholar 

  • Novotny Č, Erbanová P, Šašek V, Kubátová A, Cajthaml T, Lang E, Krahl J, Zadražil F (1999) Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation 10: 159–168.

    PubMed  CAS  Google Scholar 

  • Obuekwe CO, Hourani G, Radwan SS (2001) High-temperature hydrocarbon biodegradation activities in Kuwaiti desert soil samples. Folia Microbiol 46: 535–539.

    CAS  Google Scholar 

  • Phillips DH (1983) Fifty years of benzo[a]pyrene. Nature 303: 468–472.

    PubMed  CAS  Google Scholar 

  • Pickard MA, Roman R, Tinoco R, Vázquez-Duhalt R (1999) Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol 65: 3805–3809.

    PubMed  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57: 20–33.

    PubMed  CAS  Google Scholar 

  • Pothuluri JV, Cerniglia CE (1994) Microbial metabolism of polycyclic aromatic hydrocarbons. In Biological Degradation and Bioremediation of Toxic Chemicals. GR Chaudhry (ed.). Portland, Oregon: Dioscorides Press, pp. 92–124.

    Google Scholar 

  • Pothuluri JV, Evans FE, Heinze TM, Cerniglia CE (1996) Formation of sulfate and glucoside conjugates of benzo[e]pyrene by Cunninghamella elegans. Appl Microbiol Biotechnol 45: 677–683.

    CAS  Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1990) Fungal transformation of fluoranthene. Appl Environ Microbiol 56: 2974–2983.

    PubMed  CAS  Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1992) Fungal metabolism of acenaphthene by Cunninghamella elegans. Appl Environ Microbiol 58: 3654–3659.

    PubMed  CAS  Google Scholar 

  • Pothuluri JV, Freeman JP, Evans FE, Cerniglia CE (1993) Biotransformation of fluorene by the fungus Cunninghamella elegans. Appl Environ Microbiol 59: 1977–1980.

    PubMed  CAS  Google Scholar 

  • Pothuluri JV, Selby A, Evans FE, Freeman JP, Cerniglia CE (1995) Transformation of chrysene and other polycyclic aromatic hydrocarbon mixtures by the fungus Cunninghamella elegans. Can J Bot 73(Suppl. 1): S1025–S1033.

    CAS  Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006a) Oxidative degradation of polyaromatic hydrocarbons and their derivatives catalyzed directly by the yellow laccase from Pleurotus ostreatus D1. J Mol Catal B-Enzym 41: 8–15.

    CAS  Google Scholar 

  • Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006b) Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzyme Microb Technol 39: 1242–1249.

    CAS  Google Scholar 

  • Rafin C, Potin O, Veignie E, Lounès-Hadj Sahraoui A, Sancholle M (2000) Degradation of benzo[a]pyrene as sole carbon source by a non white rot fungus, Fusarium solani. Polycycl Aromat Compd 21: 311–329.

    CAS  Google Scholar 

  • Raghukumar C, Shailaja MS, Parameswaran PS, Singh SK (2006) Removal of polycyclic aromatic hydrocarbons from aqueous media by the marine fungus NIOCC # 312: involvement of lignin-degrading enzymes and exopolysaccharides. Indian J Mar Sci 35: 373–379.

    CAS  Google Scholar 

  • Rama R, Mougin C, Boyer FD, Kollmann A, Malosse C, Sigoillot JC (1998) Biotransformation of benzo[a]pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnol Lett 20: 1101–1104.

    CAS  Google Scholar 

  • Rama R, Sigoillot J-C, Chaplain V, Asther M, Jolivalt C, Mougin C (2001) Inoculation of filamentous fungi in manufactured gas plant site soils and PAH transformation. Polycycl Aromat Compd 18: 397–414.

    CAS  Google Scholar 

  • Rama-Mercier R, Mougin C, Sigoillot J-C, Sohier L, Chaplain V, Asther M (1998) Wet sand cultures to screen filamentous fungi for the biotransformation of polycyclic aromatic hydrocarbons. Biotechnol Tech 12: 725–728.

    CAS  Google Scholar 

  • Ravelet C, Grosset C, Krivobok S, Montuelle B, Alary J (2001a) Pyrene degradation by two fungi in a freshwater sediment and evaluation of fungal biomass by ergosterol content. Appl Microbiol Biotechnol 56: 803–808.

    PubMed  CAS  Google Scholar 

  • Ravelet C, Grosset C, Montuelle B, Benoit-Guyod JL, Alary J (2001b) Liquid chromatography study of pyrene degradation by two micromycetes in a freshwater sediment. Chemosphere 44: 1541–1546.

    PubMed  CAS  Google Scholar 

  • Ravelet C, Krivobok S, Sage L, Steiman R (2000) Biodegradation of pyrene by sediment fungi. Chemosphere 40: 557–563.

    PubMed  CAS  Google Scholar 

  • Reid BJ, Fermor TR, Semple KT (2002) Induction of PAH-catabolism in mushroom compost and its use in the biodegradation of soil-associated phenanthrene. Environ Pollut 118: 65–73.

    PubMed  CAS  Google Scholar 

  • Rodríguez E, Nuero O, Guillén F, Martínez AT, Martínez MJ (2004) Degradation of phenolic and non-phenolic aromatic pollutants by four Pleurotus species: the role of laccase and versatile peroxidase. Soil Biol Biochem 36: 909–916.

    Google Scholar 

  • Romero MC, Cazau MC, Giorgieri S, Arambarri AM (1998) Phenanthrene degradation by microorganisms isolated from a contaminated stream. Environ Pollut 101: 355–359.

    CAS  Google Scholar 

  • Romero MC, Salvioli ML, Cazau MC, Arambarri AM (2002) Pyrene degradation by yeasts and filamentous fungi. Environ Pollut 117: 159–163.

    PubMed  CAS  Google Scholar 

  • Sack U, Günther T (1993) Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol 33: 269–277.

    PubMed  CAS  Google Scholar 

  • Sack U, Heinze TM, Deck J, Cerniglia CE, Cazau MC, Fritsche W (1997b) Novel metabolites in phenanthrene and pyrene transformation by Aspergillus niger. Appl Environ Microbiol 63: 2906–2909.

    PubMed  CAS  Google Scholar 

  • Sack U, Heinze TM, Deck J, Cerniglia CE, Martens R, Zadražil F, Fritsche W (1997a) Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol 63: 3919–3925.

    PubMed  CAS  Google Scholar 

  • Sack U, Hofrichter M, Fritsche W (1997c) Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett 152: 227–234.

    PubMed  CAS  Google Scholar 

  • Salicis F, Krivobok S, Jack M, Benoit-Guyod J-L (1999) Biodegradation of fluoranthene by soil fungi. Chemosphere 38: 3031–3039.

    PubMed  CAS  Google Scholar 

  • Santodonato J (1997) Review of the estrogenic and antiestrogenic activity of polycyclic aromatic hydrocarbons: relationship to carcinogenicity. Chemosphere 34: 835–848.

    PubMed  CAS  Google Scholar 

  • Saraswathy A, Hallberg R (2002) Degradation of pyrene by indigenous fungi from a former gasworks site. FEMS Microbiol Lett 210: 227–232.

    PubMed  CAS  Google Scholar 

  • Saraswathy A, Hallberg R (2005) Mycelial pellet formation by Penicillium ochrochloron species due to exposure to pyrene. Microbiol Res 160: 375–383.

    PubMed  CAS  Google Scholar 

  • Schützendübel A, Majcherczyk A, Johannes C, Hüttermann A (1999) Degradation of fluorene, anthracene, phenanthrene, fluoranthene, and pyrene lacks connection to the production of extracellular enzymes by Pleurotus ostreatus and Bjerkandera adusta. Int Biodeterior Biodegrad 43: 93–100.

    Google Scholar 

  • Shanshal M, Aljuboori MH, Dawood SK, Abdullah HH (2004) Carcinogenic polyaromatic hydrocarbons in smut wheat infected with Tilletia caries. Deut Lebensm-Rundsch 100: 505–506.

    CAS  Google Scholar 

  • Shinya M, Tsuchinaga T, Kitano M, Yamada Y, Ishikawa M (2000) Characterization of heavy metals and polycyclic aromatic hydrocarbons in urban highway runoff. Water Sci Technol 42: 201–208.

    CAS  Google Scholar 

  • Shor LM, Rockne KJ, Taghon GL, Young LY, Kosson DS (2003) Desorption kinetics for field-aged polycyclic aromatic hydrocarbons from sediments. Environ Sci Technol 37: 1535–1544.

    PubMed  CAS  Google Scholar 

  • Singh H (2006) Mycoremediation: Fungal Bioremediation. Hoboken, NJ: Wiley.

    Google Scholar 

  • Sokhn J, De Leij FAAM, Hart TD, Lynch JM (2001) Effect of copper on the degradation of phenanthrene by soil micro-organisms. Lett Appl Microbiol 33: 164–168.

    PubMed  CAS  Google Scholar 

  • Song H-G (1999) Comparison of pyrene biodegradation by white rot fungi. World J Microbiol Biotechnol 15: 669–672.

    CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60: 212–217.

    PubMed  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2003) Degradation of benzo[a]pyrene by the litter-decomposing basidiomycete Stropharia coronilla: Role of manganese peroxidase. Appl Environ Microbiol 69: 3957–3964.

    PubMed  CAS  Google Scholar 

  • Su D, Li P-J, Frank S, Xiong X-Z (2006) Biodegradation of benzo[a]pyrene in soil by Mucor sp. SF06 and Bacillus sp. SB02 co-immobilized on vermiculite . J Environ Sci (China) 18: 1204–1209.

    CAS  Google Scholar 

  • Sutherland JB (2004) Degradation of hydrocarbons by yeasts and filamentous fungi. In Fungal Biotechnology in Agricultural, Food, and Environmental Applications. DK Arora (ed.). New York: Marcel Dekker, pp. 443–455.

    Google Scholar 

  • Sutherland JB, Freeman JP, Selby AL, Fu PP, Miller DW, Cerniglia CE (1990) Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol 154: 260–266.

    PubMed  CAS  Google Scholar 

  • Sutherland JB, Fu PP, Yang SK, Von Tungeln LS, Casillas RP, Crow SA, Cerniglia CE (1993) Enantiomeric composition of the trans-dihydrodiols produced from phenanthrene by fungi. Appl Environ Microbiol 59: 2145–2149.

    PubMed  CAS  Google Scholar 

  • Sutherland JB, Rafii F, Khan AA, Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. In Microbial Transformation and Degradation of Toxic Organic Chemicals. New York: Wiley-Liss, pp. 269–306.

    Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP, Evans FE, Cerniglia CE (1991) Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol 57: 3310–3316.

    PubMed  CAS  Google Scholar 

  • Sutherland JB, Selby AL, Freeman JP, Fu PP, Miller DW, Cerniglia CE (1992) Identification of xyloside conjugates formed from anthracene by Rhizoctonia solani. Mycol Res 96: 509–517.

    CAS  Google Scholar 

  • Szewczyk R, Bernat P, Milczarek K, Dlugoński J (2003) Application of microscopic fungi isolated from polluted industrial areas for polycyclic aromatic hydrocarbons and pentachlorophenol reduction. Biodegradation 14: 1–8.

    PubMed  CAS  Google Scholar 

  • Tabak HH, Lazorchak JM, Lei L, Khodadoust AP, Antia JE, Bagchi R, Suidan MT (2003) Studies on bioremediation of polycyclic aromatic hydrocarbon-contaminated sediments: bioavailability, biodegradability, and toxicity issues. Environ Toxicol Chem 22: 473–482.

    PubMed  CAS  Google Scholar 

  • Tatarko M, Bumpus JA (1993) Biodegradation of phenanthrene by Phanerochaete chrysosporium: on the role of lignin peroxidase. Lett Appl Microbiol 17: 20–24.

    CAS  Google Scholar 

  • Tekere M, Read JS, Mattiasson B (2005) Polycyclic aromatic hydrocarbon biodegradation in extracellular fluids and static batch cultures of selected sub-tropical white rot fungi. J Biotechnol 115: 367–377.

    PubMed  CAS  Google Scholar 

  • Terrazas-Siles E, Alvarez T, Guieysse B, Mattiasson B (2005) Isolation and characterization of a white rot fungus Bjerkandera sp. strain capable of oxidizing phenanthrene. Biotechnol Lett 27: 845–851.

    PubMed  CAS  Google Scholar 

  • Tongpim S, Pickard MA (1999) Cometabolic oxidation of phenanthrene to phenanthrene trans-9,10-dihydrodiol by Mycobacterium strain S1 growing on anthracene in the presence of phenanthrene. Can J Microbiol 45: 369–376.

    PubMed  CAS  Google Scholar 

  • Tuháčková J, Cajthaml T, Novák K, Novotny Č, Mertelik J, Šašek V (2001) Hydrocarbon deposition and soil microflora as affected by highway traffic. Environ Pollut 113: 255–262.

    PubMed  Google Scholar 

  • Ullrich R, Hofrichter M (2005) The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene. FEBS Lett 579: 6247–6250.

    PubMed  CAS  Google Scholar 

  • Valentín L, Feijoo G, Moreira MT, Lema JM (2006) Biodegradation of polycyclic aromatic hydrocarbons in forest and salt marsh soils by white-rot fungi. Int Biodeterior Biodegrad 58: 15–21.

    Google Scholar 

  • Valentín L, Lu-Chau TA, López C, Feijoo G, Moreira MT, Lema JM (2007) Biodegradation of dibenzothiophene, fluoranthene, pyrene and chrysene in a soil slurry reactor by the white-rot fungus Bjerkandera sp BOS55. Process Biochem 42: 641–648.

    Google Scholar 

  • Vázquez-Duhalt R, Ayala M, Márquez-Rocha FJ (2001) Biocatalytic chlorination of aromatic hydrocarbons by chloroperoxidase of Caldariomyces fumago. Phytochemistry 58: 929–933.

    PubMed  Google Scholar 

  • Veignie E, Rafin C, Woisel P, Lounès-Hadj Sahraoui A, Cazier F (2002) Metabolization of the polycyclic aromatic hydrocarbon benzo[a]pyrene by a non-white rot fungus (Fusarium solani) in a batch reactor. Polycycl Aromat Compd 22: 87–97.

    CAS  Google Scholar 

  • Verdin A, Lounès-Hadj Sahraoui A, Fontaine J, Grandmougin-Ferjani A, Durand R (2006a) Effects of anthracene on development of an arbuscular mycorrhizal fungus and contribution of the symbiotic association to pollutant dissipation. Mycorrhiza 16: 397–405.

    PubMed  CAS  Google Scholar 

  • Verdin A, Lounès-Hadj Saharoui A, Laruelle F, Grandmougin-Ferjani A, Durand R (2006b) Effect of the high polycyclic aromatic hydrocarbon, benzo[a]pyrene, on the lipid content of Fusarium solani. Mycol Res 110: 479–484.

    PubMed  CAS  Google Scholar 

  • Verdin A, Lounès-Hadj Sahraoui A, Newsam R, Robinson G, Durand R (2005) Polycyclic aromatic hydrocarbons storage by Fusarium solani in intracellular lipid vesicles. Environ Pollut 133: 283–291.

    PubMed  CAS  Google Scholar 

  • Villemain D, Guiraud P, Bordjiba O, Steiman R (2006) Biotransformation of anthracene and fluoranthene by Absidia fusca Linnemann. Electron J Biotechnol 9: 107–116.

    CAS  Google Scholar 

  • Vyas BRM, Bakowski S, Šašek V, Matucha M (1994) Degradation of anthracene by selected white rot fungi. FEMS Microbiol Ecol 14: 65–70.

    CAS  Google Scholar 

  • Wang R-F, Cao W-W, Khan AA, Cerniglia CE (2000) Cloning, sequencing, and expression in Escherichia coli of a cytochrome P450 gene from Cunninghamella elegans. FEMS Microbiol Lett 188: 55–61.

    PubMed  CAS  Google Scholar 

  • Wang X, Gong Z, Li P, Zhang L (2007) Degradation of pyrene in soils by free and immobilized yeasts, Candida tropicalis. Bull Environ Contam Toxicol 78: 522–526.

    PubMed  CAS  Google Scholar 

  • Wang X, Li P, Gong Z, Li B, Ju J, He X, Tai P (2001) Degradation of phenanthrene and pyrene in contaminated soil by immobilized Zoogloea sp. and Fusarium sp. Chin J Appl Ecol 12: 636–638 (in Chinese).

    CAS  Google Scholar 

  • Warshawsky D (1999) Polycyclic aromatic hydrocarbons in carcinogenesis. Environ Health Perspect 107: 317–319.

    PubMed  CAS  Google Scholar 

  • Wilcke W (2000) Polycyclic aromatic hydrocarbons (PAHs) in soil. J Plant Nutr Soil Sci 163: 229–248.

    CAS  Google Scholar 

  • Wolter M, Zadražil F, Martens R, Bahadir M (1997) Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Appl Microbiol Biotechnol 48: 398–404.

    CAS  Google Scholar 

  • Wu Y, Luo Y, Zou D, Ni J, Liu W, Teng Y, Li Z (2008) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation 19: 247–257.

    PubMed  CAS  Google Scholar 

  • Wunch KG, Alworth WL, Bennett JW (1999) Mineralization of benzo[a]pyrene by Marasmiellus troyanus, a mushroom isolated from a toxic waste site. Microbiol Res 154: 75–79.

    PubMed  CAS  Google Scholar 

  • Wunch KG, Feibelman T, Bennett JW (1997) Screening for fungi capable of removing benzo[a]pyrene in culture. Appl Microbiol Biotechnol 47: 620–624.

    CAS  Google Scholar 

  • Wunder T, Kremer S, Sterner O, Anke H (1994) Metabolism of the polycyclic aromatic hydrocarbon pyrene by Aspergillus niger SK 9317. Appl Microbiol Biotechnol 42: 636–641.

    PubMed  CAS  Google Scholar 

  • Yogambal RK, Karegoudar TB (1997) Metabolism of polycyclic aromatic hydrocarbons by Aspergillus niger. Indian J Exp Biol 35: 1021–1023.

    PubMed  CAS  Google Scholar 

  • Yu H (2002) Environmental carcinogenic polycyclic aromatic hydrocarbons: photochemistry and phototoxicity. J Environ Sci Health C 20: 149–183.

    Google Scholar 

  • Zang S-Y, Li P-J, Yu X-C, Shi K, Zhang H, Chen J (2007) Degradation of metabolites of benzo[a]pyrene by coupling Penicillium chrysogenum with KMnO4. J Environ Sci (China) 19: 238–243.

    CAS  Google Scholar 

  • Zhang DL, Yang YF, Leakey JEA, Cerniglia CE (1996) Phase I and phase II enzymes produced by Cunninghamella elegans for the metabolism of xenobiotics. FEMS Microbiol Lett 138: 221–226.

    PubMed  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2000) Removal of polycyclic aromatic hydrocarbons from soil using surfactant and the white rot fungus Phanerochaete chrysosporium. J Chem Technol Biotechnol 75: 1183–1189.

    CAS  Google Scholar 

  • Zheng Z, Obbard JP (2001) Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Phanerochaete chrysosporium. J Chem Technol Biotechnol 76: 423–429.

    CAS  Google Scholar 

  • Zheng Z, Obbard JP (2002a) Removal of surfactant solubilized polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in a rotating biological contactor reactor. J Biotechnol 96: 241–249.

    PubMed  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2002b) Polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization and Phanerochaete chrysosporium oxidation. J Environ Qual 31: 1842–1847.

    PubMed  CAS  Google Scholar 

  • Zumárraga M, Plou FJ, García-Arellano H, Ballesteros A, Alcalde M (2007) Bioremediation of polycyclic aromatic hydrocarbons by fungal laccases engineered by directed evolution. Biocatal Biotransform 25: 219–228.

    Google Scholar 

Download references

Acknowledgments

We thank Diana Mathews and Sherry Terry for secretarial assistance. The views presented in this article do not necessarily reflect those of the Food and Drug Administration.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cerniglia, C.E., Sutherland, J.B. (2010). Degradation of Polycyclic Aromatic Hydrocarbons by Fungi . In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_151

Download citation

Publish with us

Policies and ethics