Halophilic Hydrocarbon Degraders

  • T. J. McGenity


The ability of microbes to grow either at high salinity (>10% in the context of this chapter), or with hydrocarbons as sole source of carbon and energy, is relatively common. In contrast, there are far fewer known halophilic hydrocarbon degraders, and factors contributing to this may include the reduced solubility of hydrocarbons and oxygen at elevated salinities, and the conflicting demands of salt (hydrophilic) and oil (hydrophobic) on the structure and hydrophobicity of the cell envelope. After discussing numerous hypersaline and oil-rich environments and the microbial consortia that have been recovered from them, this chapter will highlight the main hydrocarbon degraders from different taxa with: (1) predominantly hydrocarbon-degrading and mostly haloterant isolates (e.g., Marinobacter and Alcanivorax); (2) predominantly halophilic with some hydrocarbon-degrading isolates (e.g., Halobacteriaceae and Halomonadaceae); (3) others, with some halophilic species, some hydrocarbon-degrading species, and occasionally both (e.g., Bacillales and Actinobacteria).


Hydrocarbon Degradation Great Salt Lake Hypersaline Environment Salt Diapir Elevated Salinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abed RMM, Al-Thukair A, DeBeer D (2006) Bacterial diversity of a cyanobacterial mat degrading petroleum compounds at elevated salinities and temperatures. FEMS Microbiol Ecol 57: 290–301.PubMedCrossRefGoogle Scholar
  2. Aizenshtat Z, Miloslavski I, Aschengrau D, Oren A (1999) Hypersaline depositional environments and their relation to oil generation. In Microbiology and Biogeochemistry of Hypersaline Environments. A Oren (ed.). Boca Raton: CRC Press, pp. 89–108.Google Scholar
  3. Al-Mahruki A, Al-Mueini R, Al-Mahrooqi Y, Al-Sabahi A, Roos GHP, Patzelt H (2006) Significantly enhanced landfarming performance through the use of saline water and weekly tilling. SPE-98568-PP In Proceedings from the SPE International Conference on Health and Safety, and Environment in Oil and Gas Exploration and Production, Abu Dhabi, UAE.Google Scholar
  4. Al-Mueini R, Al-Dalali M, Al-Amri IS, Patzelt H (2007) Hydrocarbon degradation at high salinity by a novel extremely halophilic actinomycete. Environ Chem 4: 5–7.CrossRefGoogle Scholar
  5. Alva VA, Peyton BM (2003) Phenol and catechol biodegradation by the haloalkaliphile Halomonas campisalis: influence of pH and salinity. Environ Sci Technol 37: 4397–4402.PubMedCrossRefGoogle Scholar
  6. Ananyina LN, Plotnikova EG, Gavrish EY, Demakov VA, Evtushenko LI (2007) Salinicola socius gen. nov., sp. nov., a moderately halophilic bacterium from a naphthalene-utilizing microbial association. Mikrobiologiya 76: 324–330.Google Scholar
  7. Artz RRE, Semple KT, Kilham K, Prosser JI, Paton GI (2003) The potential for anaerobic mineralization of hydrocarbon constituents of oily drill cuttings from the North Sea seabed. J Environ Monit 4: 553–557.CrossRefGoogle Scholar
  8. Ben Ali Gam Z, Abdelkafi S, Casalot L, Tholozan JL, Oueslati R, Labat M (2007) Modicisalibacter tunisiensis gen. nov., sp. nov., an aerobic, moderately halophilic bacterium isolated from an oilfield-water injection sample, and emended description of the family Halomonadaceae Franzmann et al. 1989 emend Dobson and Franzmann 1996 emend. Ntougias et al. 2007. Int J Syst Evol Microbiol 57: 2307–2313.PubMedCrossRefGoogle Scholar
  9. Bechtel A, Shieh YN, Pervaz M, Putterman W (1996) Biodegradation of hydrocarbons and biogeochemical sulfur cycling in the salt dome environmnent: inferences from sulfur isotope and organic geochemical investigations of the Bahloul Formation in the Bou Grine Zn/Pb ore deposit, Tunisia. Geochim Cosmochim Acta 60: 2833–2855.CrossRefGoogle Scholar
  10. Bertrand J-C, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11: 260–263.CrossRefGoogle Scholar
  11. Calvo C, Martinez-Checa F, Toledo FL, Porcel J, Quesada E (2002) Characteristics of bioemulsifiers synthesised in crude oil media by Halomonas eurihalina and their effectiveness in the isolation of bacteria able to grow in the presence of hydrocarbons. Appl Microbiol Biotechnol 60: 347–351.PubMedCrossRefGoogle Scholar
  12. Chamkha M, Mnif S, Sayadi S (2008) Isolation of a thermophilic and halophilic tyrosol-degrading Geobacillus from a Tunisian high-temperature oil field. FEMS Microbiol Lett 283: 23–29.PubMedCrossRefGoogle Scholar
  13. Cuadros-Orellana S, Pohlschröder M, Durrant LR (2006) Isolation and characterization of halophilic archaea able to grow in aromatic compounds. Int Biodeterior Biodegradation 57: 151–154.CrossRefGoogle Scholar
  14. Daffonchio D, Borin S, Brusa T, Brusetti L, Wielen PWJJ, Bolhuis H, D’Auria G, Yakimov M, Giuliano L, Tamburini C, Marty D, McGenity TJ, Hallsworth JE, Sass AM, Timmis KN, Tselepides A, de Lange GJ, Huebner A, Thomson J, Varnavas SP, Gasparoni F, Gerber HW, Malinverno E, Corselli C, Biodeep Scientific Party (2006) Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. Nature 440: 203–207.PubMedCrossRefGoogle Scholar
  15. Díaz MP, Boyd KG, Grigson SJW, Burgess JG (2002) Biodegradation of crude oil across a wide range of salinities by an extremely halotolerant bacterial consortium MPD-M, immobilized onto polypropylene fibers. Biotechnol Bioeng 79: 145–153.PubMedCrossRefGoogle Scholar
  16. Díaz MP, Grigson SJW, Peppiatt CJ, Burgess JG (2000) Isolation and characterization of novel hydrocarbon-degrading euryhaline consortia from crude oil and mangrove sediments. Mar Biotechnol 2: 522–532.CrossRefGoogle Scholar
  17. Emerson D, Chauhan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch Microbiol 161: 445–452.CrossRefGoogle Scholar
  18. Fairley DJ (2006) Expression of gentisate 1,2-dioxygenase (gdoA) genes involved in aromatic degradation in two haloarchaeal genera. Appl Microbiol Biotechnol 73: 691–695.PubMedCrossRefGoogle Scholar
  19. Fairley DJ, Boyd DR, Sharma ND, Allen CCR, Morgan P, Larkin MJ (2002) Aerobic metabolism of 4-hydroxybenzoic acid in Archaea via an unusual pathway involving an intramolecular migration (NIH shift). Appl Env Microbiol 68: 6246–6255.CrossRefGoogle Scholar
  20. Fernandez-Linares L, Acquaviva M, Bertrand J-C, Gauthier M (1996a) Effect of sodium chloride concentration on growth and degradation of eicosane by the marine halotolerant bacterium Marinobacter hydrocarbonoclasticus. Syst Appl Microbiol 19: 113–121.Google Scholar
  21. Fernandez-Linares L, Faure R, Bertrand J-C, Gauthier M (1996b) Ectoine as the predominant osmolyte in the marine bacterium Marinobacter hydrocarbonoclasticus grown on eicosane at high salinities. Lett Appl Microbiol 22: 169–172.CrossRefGoogle Scholar
  22. Fu WJ, Oriel P (1998) Gentisate 1,2-dioxygenase from Haloferax sp. D1227. Extremophiles 2: 439–446.PubMedCrossRefGoogle Scholar
  23. García MT, Mellado E, Ostos JC, Ventosa A (2004) Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54: 1723–1728.PubMedCrossRefGoogle Scholar
  24. García MT, Gallego V, Ventosa A, Mellado E (2005a) Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55: 1789–1795.PubMedCrossRefGoogle Scholar
  25. García MT, Ventosa A, Mellado E (2005b) Catabolic versatility of aromatic compound-degrading halophilic bacteria. FEMS Microbiol Ecol 54: 97–109.PubMedCrossRefGoogle Scholar
  26. Gauthier MJ, LaFay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand J-C (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42: 568–576.PubMedCrossRefGoogle Scholar
  27. Hart DJ, Vreeland RH (1988) Changes in the hydrophobic-hydrophilic cell surface character of Halomonas elongata in response to NaCl. J Bacteriol 170: 132–135.PubMedGoogle Scholar
  28. Javor B (1989) Hypersaline Environments. Berlin: Springer.Google Scholar
  29. Kapley A, Purohit HJ, Chhatre S, Shanker R, Chakrabarti T, Khanna P (1999) Osmotolerance and hydrocarbon degradation by a genetically engineered microbial consortium. Bioresour Technol 67: 241–245.CrossRefGoogle Scholar
  30. Kim J-S, Crowley DE (2007) Microbial diversity in natural asphalts of the Rancho la Brea tar pits. Appl Env Microbiol 73: 4579–4591.CrossRefGoogle Scholar
  31. Kleinsteuber S, Riis V, Fetzer I, Harms H, Müller S (2006) Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. Appl Env Microbiol 72: 3531–3542.CrossRefGoogle Scholar
  32. Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology 60: 596–601.Google Scholar
  33. Kumar M, León V, de Sistro Materano A, Ilzins OA (2007) A halotolerant and thermotolerant Bacillus sp. degrades hydrocarbons and produces tension-active emulsifying agent. World J Microbiol Biotechnol 23: 211–220.CrossRefGoogle Scholar
  34. Kuznetsov VD, Zaitseva TA, Vakulenko LV, Filippova SN (1992) Streptomyces albiaxialis sp. nov. – a new petroleum hydrocarbon-degrading species of thermo- and halotolerant Streptomyces. Microbiology 61: 62–67.Google Scholar
  35. Lahav R, Fareleira P, Nejidat A, Abelovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol 43: 388–396.PubMedCrossRefGoogle Scholar
  36. Le Borgne S, Paniagua D, Vasquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic Bacteria and Archaea. J Mol Microbiol Bioechnol 15: 74–92.CrossRefGoogle Scholar
  37. Li H, Liu YH, Luo N, Zhang XY, Luan TG, Hu JM, et al. (2006) Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22. Res Microbiol 157: 629–636.PubMedCrossRefGoogle Scholar
  38. McGenity TJ, Gemmell RT, Grant WD, Stan-Lotter H (2000) Origins of halophilic microorganisms in ancient salt deposits. Environ Microbiol 2: 243–250.PubMedCrossRefGoogle Scholar
  39. McGenity TJ, Hallsworth JE, Timmis KN (2008) Connectivity between “ancient” and “modern” hypersaline environments, and the salinity limits of life. In CIESM Workshop Monographs n°33: The Messinian Salinity Crisis from Mega-Deposits to Microbiology – A Consensus Report, 7–10 November, Almeria, Spain, pp. 115–120.Google Scholar
  40. Margesin R, Schinner F (2001a) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73–83.PubMedCrossRefGoogle Scholar
  41. Margesin R, Schinner F (2001b) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56: 650–663.PubMedCrossRefGoogle Scholar
  42. Nicholson CA, Fathepure BZ (2004) Biodegradation by halophilic and halotolerant bacteria under aerobic conditions. Appl Env Microbiol 70: 1222–1225.CrossRefGoogle Scholar
  43. Nicholson CA, Fathepure BZ (2005) Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol Lett 245: 257–262.PubMedCrossRefGoogle Scholar
  44. Obuekwe CO, Badrudeen AM, Al-Saleh E, Mulder JL (2005) Growth and hydrocarbon degradation by three desert fungi under conditions of simultaneous temperature and salt stress. Int Biodeterior Biodegradation 56: 197–205.CrossRefGoogle Scholar
  45. Oie CSI, Albaugh CE, Peyton BM (2007) Benzoate and salicylate degradation by Halomonas campisalis, an alkaliphilic and moderately halophilic microorganism. Water Res 41: 1235–1242.PubMedCrossRefGoogle Scholar
  46. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63: 334–348.PubMedGoogle Scholar
  47. Oren A (2002) Halophilic Organisms and their Environments. Dordrecht: Kluwer.CrossRefGoogle Scholar
  48. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Sal Syst 4: 2.Google Scholar
  49. Oren A, Gurevich P, Azachi M, Henis Y (1992) Microbial degradation of pollutants at high salt concentrations. Biodegradation 3: 387–398.CrossRefGoogle Scholar
  50. Oren A, Vreeland RH, Ventosa A (2007) International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Halobacteriaceae and Subcommittee on the taxonomy of Halomonadaceae. Minutes of the joint open meeting, 3 September, Colchester, UK. Int J Syst Evol Microbiol 57: 2975–2978.CrossRefGoogle Scholar
  51. Patzelt H (2004) Hydrocarbon degradation under hypersaline conditions. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria and Eukarya. N Gunde-Cimerman, A Plemenitš, A Oren (ed.). Dordrecht: Springer, pp. 107–122.Google Scholar
  52. Pepi M, Cesàro A, Liut G, Baldi F (2005) An Antarctic psychrotrophic bacterium Halomonas sp. ANT-3b, growing on n-hexadecane, produces a new emulsifying glycolipid. FEMS Microbiol Ecol 53: 157–166.PubMedCrossRefGoogle Scholar
  53. Peyton BM, Mormile MR, Alva V, Oie C, Roberto F, Apel WA, Oren A (2004) Biotransformation of toxic organic and inorganic compounds by halophilic bacteria. In Halophilic Microorganisms. A Ventosa (ed.). Berlin: Springer, pp. 315–330.Google Scholar
  54. Pironon J, Pagel M, Walgenwitz F, Barrès O (1995) Organic inclusions in salt. Part 2. Oil, gas and ammonium in inclusions from the Gabon margin. Org Geochem 23: 739–750.CrossRefGoogle Scholar
  55. Plotnikova EG, Altyntseva OV, Kosheleva IA, Puntus IF, Filonov AE, Gavrish EY, Demakov VA, Boronin AM (2001) Bacterial degraders of polycyclic aromatic hydrocarbons isolated from salt-contaminated soils and bottom sediments in salt mining areas. Microbiology 70: 51–58.CrossRefGoogle Scholar
  56. Post FJ, Al-Harjan FA (1988) Surface activity of halobacteria and potential use in microbially enhanced oil recovery. System Appl Microbiol 11: 97–101.Google Scholar
  57. Riis V, Kleinsteuber S, Babel W (2003) Influence of high salinity on the degradation of diesel fuel by bacterial consortia. Can J Microbiol 49: 713–721.PubMedCrossRefGoogle Scholar
  58. Roberts MF (2005) Organic compatible solutes of halotolerant and halophilic microorganisms. Sal Syst 1: 5.CrossRefGoogle Scholar
  59. Sabirova JS, Chernikova TN, Timmis KN, Golyshin PN (2008) Niche-specificity factors of a marine oil-degrading bacterium Alcanivorax borkumensis SK2. FEMS Microbiol Lett 285: 89–96.PubMedCrossRefGoogle Scholar
  60. Sass AM, McKew BA, Sass H, Fichtel J, Timmis KN, McGenity TJ (2008) Diversity of Bacillus-like organisms isolated from deep-sea hypersaline anoxic sediments. Sal Sys 4: 8.CrossRefGoogle Scholar
  61. Schneiker S, Martins dos Santos VAP, Bartels D, Bekel T, Brecht M, Buhrmester J, Chernikova TN, Denaro R, Ferrer M, Gertler C, Goesmann A, Golyshina OV, Kaminski F, Khachane AN, Lang S, Linke B, McHardy AC, Meyer F, Nechitaylo T, Pühler A, Regenhardt D, Rupp O, Sabirova JS, Selbitschka W, Yakimov MM, Timmis KN, Vorhölter F-J, Weidner S, Kaiser O, Golyshin PN (2006) Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat Biotechnol 24: 997–1004.PubMedCrossRefGoogle Scholar
  62. Wang YN, Cai H, Chi CQ, Lu AH, Lin XG, Jiang ZF, Wu XL (2007a) Halomonas shengliensis sp. nov., a moderately halophilic, denitrifying, crude-oil-utilizing bacterium. Int J Syst Evol Microbiol 57: 1222–1226.PubMedCrossRefGoogle Scholar
  63. Wang YN, Cai H, Yu SL, Wang ZY, Liu J, Wu XL (2007b) Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57: 911–915.PubMedCrossRefGoogle Scholar
  64. Ward DM, Brock TD (1978) Hydrocarbon biodegradation in hypersaline environments. Appl Env Microbiol 35: 353–359.Google Scholar
  65. Whitehouse BG (1984) The effects of temperature and salinity on the aqueous solubility of polynuclear aromatic hydrocarbons. Mar Chem 14: 319–332.CrossRefGoogle Scholar
  66. Yakimov MM, Golyshin PN, Lang S, Moore ERB, Abraham WR, Lünsdorf H, Timmis KN (1998) Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48: 339–348.PubMedGoogle Scholar
  67. Yumoto I, Yamaga S, Sogabe Y, Nodasaka Y, Matsuyama H, Nakajima K, Suemori A (2003) Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53: 1531–1536.PubMedCrossRefGoogle Scholar
  68. Zhao BS, Wang H, Mao XW, Li RR (2009) Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58: 205–210.PubMedCrossRefGoogle Scholar
  69. Zvyangintseva IS, Belyaev SS, Borzenkov IA, Kostrikana NA, Milekhina EI, Ivanov MV (1995) Halophilic archaebacteria from the Kalamkass oil field. Microbiology 64: 67–71.Google Scholar
  70. Zvyagintseva IS, Kostrikana NA, Belyaev SS (1988) Detection of halophilic archaea in an upper Devonia oil field in Tatarstan. Microbiology 67: 688–691.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • T. J. McGenity
    • 1
  1. 1.Department of Biological SciencesUniversity of EssexColchesterUK

Personalised recommendations