History of Life from the Hydrocarbon Fossil Record

  • C. C. Walters
  • K. E. Peters
  • J. M. Moldowan


Certain lipids and biopolymers retain their original structure through sedimentary diagenesis and catagenesis that they can be assigned to a specific biological origin. These “taxon-specific biomarkers” (TSBs) can serve as chemical fossils that trace the evolution of life. TSBs in Early Precambrian rocks reveal the early evolution of archaea, cyanobacteria, and eukarya and the development of atmospheric free oxygen. Steroidal TSBs document the changing nature of marine phytoplankton from Neoproterozoic organic-walled acritarchs to the predominance of present day diatoms and terpanoid TSRs reveal the evolution of higher land plants. TSBs, used in conjunction with isotopic analysis, can identify the taxa of enigmatic fossils, provide important clues to the causes of mass extinctions, and describe the global changes in biotic diversity and Earth’s conditions as the biosphere recovers. Biomarkers record the evolutionary history of life on Earth and perhaps, other planets.


Source Rock Mass Extinction Paris Basin Rhodopseudomonas Palustris Cambrian Source Rock 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441: 714–718.PubMedCrossRefGoogle Scholar
  2. Altermann W, Kazmierczak J (2003) Archean microfossils: a reappraisal of early life on Earth. Res Microbiol 154: 611–617.PubMedCrossRefGoogle Scholar
  3. Armstroff A, Wilkes H, Schwarzbauer J, Littke R, Horsfield B (2006) Aromatic hydrocarbon biomarkers in terrestrial organic matter of Devonian to Permian age. Palaeogeogr Palaeoclimatol Palaeoecol 240: 253–274.CrossRefGoogle Scholar
  4. Asara JM, Schweitzer MH, Freimark LM, Phillips M, Cantley LC (2007) Protein sequences from mastodon and Tyrannosaurus Rex revealed by mass spectrometry. Science 316: 280–285.PubMedCrossRefGoogle Scholar
  5. Auras S, Wilde V, Hoernes S, Scheffler K, Püttmann W (2006) Biomarker composition of higher plantmacrofossils from Late Palaeozoic sediments. Palaeogeogr Palaeoclimatol Palaeoecol 240: 305–317.CrossRefGoogle Scholar
  6. Barbanti SM, Moldowan JM, Mello MR, Kolaczkowski E, Watt DS, Huizinga BJ (1999) Analysis and occurrence of novel triaromatic 23,24 dimethylcholestanes in geologic time. In Proceedings of the 19th International Meeting on Organic Geochemistry, 6–10 September, Istanbul, Turkey, pp. 159–160.Google Scholar
  7. Bateman RM, Crane PR, DiMichele WA, Kenrick PR, Rowe NP, Speck T, Stein WE (1998) Early evolution of land plants: phylogeny, physiology, and ecology of the primary terrestrial radiation. Annu Rev Ecol Syst 29: 263–292.CrossRefGoogle Scholar
  8. Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291: 1530–1533.PubMedCrossRefGoogle Scholar
  9. Boyce CK, Hotton CL, Fogel ML, Cody GD, Hazen RM, Knoll AH, Hueber FM (2007) Devonian landscape heterogeneity recorded by a giant fungus. Geology 35: 399–402.CrossRefGoogle Scholar
  10. Brasier M, McLoughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc Lond B Biol Sci 361: 887–902.PubMedCrossRefGoogle Scholar
  11. Brassell SC, Dumitrescu M, the ODP Leg 198 Shipboard Scientific Party (2004) Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific. Org Geochem 35: 181–188.CrossRefGoogle Scholar
  12. Brocks JJ, Buick R, Logan GA, Summons RE (2003a) Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia. Geochim Cosmochim Acta 67: 4289–4319.CrossRefGoogle Scholar
  13. Brocks JJ, Buick R, Summons RE, Logan GA (2003b) A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia. Geochim Cosmochim Acta 67: 4321–4335.CrossRefGoogle Scholar
  14. Brocks JJ, Grosjean E, Logan GA (2008) Assessing biomarker syngeneity using branched alkanes with quaternary carbon (BAQCs) and other plastic contaminants. Geochim Cosmochim Acta 72: 871–888.CrossRefGoogle Scholar
  15. Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of Eukaryotes. Science 285: 1033–1036.PubMedCrossRefGoogle Scholar
  16. Brocks JJ, Pearson A (2005) Building the biomarker tree of life. Rev Mineral Geochem 59: 233–258.CrossRefGoogle Scholar
  17. Brocks JJ, Summons RE (2003) Sedimentary hydrocarbons, biomarkers for early life. In Treatise on Geochemistry, HD Holland and KK Turekian (eds.). vol. 8. Amsterdam: Elsevier, pp. 63–115.Google Scholar
  18. Butterfield NJ, Rainbird RH (1998) Diverse organic-walled fossils, including “possible dinoflagellates”, from the early Neoproterozoic of Arctic Canada. Geology 26: 963–966.CrossRefGoogle Scholar
  19. Canfield DE (2005) The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu Rev Earth Planet Sci 33: 1–36.CrossRefGoogle Scholar
  20. Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52: 7–76.PubMedGoogle Scholar
  21. Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 361: 969–1006.PubMedCrossRefGoogle Scholar
  22. Collins MJ, Gernaey AM, Nielsen-Marsh CM, Vermeer C, Westbroek P (2000) Slow rates of degradation of osteocalcin: green light for fossil bone protein? Geology 28: 1139–1142.CrossRefGoogle Scholar
  23. Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci 99: 8324–8329.PubMedCrossRefGoogle Scholar
  24. Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geol 34: 437–440.CrossRefGoogle Scholar
  25. Eigenbrode JL, Freeman KH (2006) Late Archean rise of aerobic microbial ecosystems. Proc Natl Acad Sci 103: 15759–15764.PubMedCrossRefGoogle Scholar
  26. Erwin DH (2006) Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton, NJ: Princeton University Press, 306pp.Google Scholar
  27. Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289: 756–759.PubMedCrossRefGoogle Scholar
  28. Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449: 706–709.PubMedCrossRefGoogle Scholar
  29. Fedo C, Whitehouse M, Kamber B (2006) Geological constraints on detecting the earliest life on Earth: a perspective from the early Archaean (older than 3.7Gyr) of southwest Greenland. Philos Trans R Soc B Biol Sci 361: 851–867.CrossRefGoogle Scholar
  30. Fenton S, Grice K, Twitchett RJ, Bottcher ME, Looy CV, Nabbefeld B (2007) Changes in biomarker abundances and sulfur isotopes of pyrite across the Permian-Triassic (P/Tr) Schuchert Dal section (East Greenland). Earth Planet Sci Lett 262: 230–239.CrossRefGoogle Scholar
  31. Fischer WW, Pearson A (2007) Hypotheses for the origin and early evolution of triterpenoid cyclases. Geobiology 5: 19–34.Google Scholar
  32. Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450: 1184–1189.PubMedCrossRefGoogle Scholar
  33. Gensel PG, Edwards D (2001) Plants Invade the Land: Evolutionary and Environmental Perspectives. New York: Columbia University Press, 324pp.Google Scholar
  34. George SC, Volk H, Dutkiewicz A, Ridley J, Buick R (2008) Preservation of hydrocarbons and biomarkers in oil trapped inside fluid inclusions for >2 billion years. Geochim Cosmochim Acta 72: 844–870.CrossRefGoogle Scholar
  35. Greenwood PF, Summons RE (2003) GC-MS detection and significance of crocetane and pentamethylicosane in sediments and crude oils. Org Geochem 34: 1211–1222.CrossRefGoogle Scholar
  36. Grice K, Cao C, Love GD, Böttcher ME, Twitchett RJ, Grosjean E, Summons RE, Turgeon SC, Dunning W, Jin Y (2005a) Photic zone euxinia during the Permian-Triassic superanoxic event. Science 307: 706–709.PubMedCrossRefGoogle Scholar
  37. Grice K, Nabbefeld B, Maslen E (2007) Source and significance of selected polycyclic aromatic hydrocarbons in sediments (Hovea-3 well, Perth Basin, Western Australia) spanning the Permian-Triassic boundary. Org Geochem 38: 1795–1803.CrossRefGoogle Scholar
  38. Grice K, Twitchett RJ, Alexander R, Foster CB, Looy C (2005b) A potential biomarker for the Permian-Triassic ecological crisis. Earth Planet Sci Lett 236: 315–321.CrossRefGoogle Scholar
  39. Hedges SB (2002) The origin and evolution of model organisms. Nat Rev Genet 3: 838–849.PubMedCrossRefGoogle Scholar
  40. Hofmann HJ (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J Paleontol 50: 1040–1073.Google Scholar
  41. Holba AG, Dzou LIP, Masterson WD, Singletary MS, Moldowan JM, Mello MR, Tegelaar E (1998a) Application of 24-norcholestanes for constraining source age of petroleum. Org Geochem 29: 1269–1283.CrossRefGoogle Scholar
  42. Holba AG, Tegelaar EW, Huizinga BJ, Moldowan JM, Singletary MS, McCaffrey MA, Dzou LIP (1998b) 24-norcholestanes as age-sensitive molecular fossils. Geology 26: 783–786.CrossRefGoogle Scholar
  43. Holland H (2006) The oxygenation of the atmosphere and oceans. Philos Trans R Soc B Biol Sci 361: 903–915.CrossRefGoogle Scholar
  44. Huang X, Jiao D, Lu L, Huang J, Xie S (2006) Distribution and geochemical implication of aromatic hydrocarbons across the Meishan Permian-Triassic boundary. J China Univ Geosci 17: 49–54.CrossRefGoogle Scholar
  45. Javaux EJ (2007) The early eukaryotic fossil record. In Eukaryotic Membranes and Cytoskeleton: Origins and Evolution. G Jékely (ed.). Advances in experimental medicine and biology 607. Berlin: Springer, pp. 1–19.Google Scholar
  46. Jossang J, Bel-Kassaoui H, Jossang A, Seuleiman M, Nel A (2008) Quesnoin, a novel pentacyclic ent-diterpene from 55 Million years old Oise amber. J Org Chem 73: 412–417.PubMedCrossRefGoogle Scholar
  47. Knoll AH, Bambach RK, Payne JL, Pruss S, Fischer WW (2007) Paleophysiology and end-Permian mass extinction. Earth Planet Sci Lett 256: 295–313.CrossRefGoogle Scholar
  48. Knoll AH, Javaux EJ, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc B Biol Sci 361: 1023–1038.CrossRefGoogle Scholar
  49. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102: 11131–11136.PubMedCrossRefGoogle Scholar
  50. Kump LR, Barley ME (2007) Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448: 1033–1036.PubMedCrossRefGoogle Scholar
  51. Larimer FW, Chain P, Hauser L, Lamerdin J, Malfatti S, Do L, Land ML, Pelletier DA, Beatty JT, Lang AS, Tabita FR, Gibson JL, Hanson TE, Bobst C, Torres y Torres JL, Peres C, Harrison FH, Gibson J, Harwood CS (2004) Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnol 22: 55–61.CrossRefGoogle Scholar
  52. Massé G, Belt ST, Rowland SJ, Rohmer M (2004) Isoprenoid biosynthesis in the diatoms Rhizosolenia setigera (Brightwell) and Haslea ostrearia (Simonsen). Proc Natl Acad Sci 101: 4413–4418.PubMedCrossRefGoogle Scholar
  53. McCaffrey MA, Moldowan JM, Lipton PA, Summons RE, Peters KE, Jeganathan A, Watt DS (1994) Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochim Cosmochim Acta 58: 529–532.CrossRefGoogle Scholar
  54. Moldowan JM, Dahl J, Huizinga BJ, Fago FJ, Hickey LJ, Peakman TM, Taylor DW (1994) The molecular fossil record of oleanane and its relation to angiosperms. Science 265: 768–771.PubMedCrossRefGoogle Scholar
  55. Moldowan JM, Dahl J, Jacobson SR, Huizinga BJ, Fago FJ, Shetty R, Watt DS, Peters KE (1996) Chemostratigraphic reconstruction of biofacies; molecular evidence linking cyst-forming dinoflagellates with pre-Triassic ancestors. Geology 24: 159–162.CrossRefGoogle Scholar
  56. Moldowan JM, Fago FJ, Lee CY, Jacobson SR, Watt DS, Slougui N-E, Jeganathan A, Young DC (1990) Sedimentary 24-n-propylcholestanes, molecular fossils diagnostic of marine algae. Science 247: 309–312.PubMedCrossRefGoogle Scholar
  57. Moldowan JM, Jacobson SR (2000) Chemical signals for early evolution of major taxa: Biosignatures and taxon-specific biomarkers. Int Geol Rev 42: 805–812.CrossRefGoogle Scholar
  58. Moldowan JM, Talyzina NM (1998) Biogeochemical evidence for dinoflagellate ancestors in the early Cambrian. Science 281: 1168–1170.PubMedCrossRefGoogle Scholar
  59. Nisbet EG, Grassineau NV, Howe CJ, Abell PI, Regelous M, Nisbet RER (2007) The age of Rubisco: The evolution of oxygenic photosynthesis. Geobiology 5: 311–335.CrossRefGoogle Scholar
  60. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442: 908–911.PubMedCrossRefGoogle Scholar
  61. Peters KE, Walters CC, Moldowan JM (2005) The Biomarker Guide, Biomarkers and Isotopes in Petroleum Exploration and Earth History, vols. 1 & 2. Cambridge University Press, 1155pp.Google Scholar
  62. Peterson KJ, Summons RE, Donoghue PCJ (2007) Molecular paleobiology. Palaeontol 50: 775–809.CrossRefGoogle Scholar
  63. Poreda RJ, Becker L (2003) Fullerenes and interplanetary dust at the Permian-Triassic boundary. Astrobiology 3: 75–90.PubMedCrossRefGoogle Scholar
  64. Rampen SW, Schouten S, Abbas B, Panoto FE, Muyzer G, Campbell CN, Fehling J, Sinninghe Damsté JS (2007a) On the origin of 24-norcholestanes and their use as age-diagnostic biomarkers. Geology 35: 419–422.CrossRefGoogle Scholar
  65. Rampen SW, Schouten S, Sinninghe Damsté JS (2007b) Origin of 4-desmethyl-dinosteranes in sediments and oils. 23rd International Meeting on Organic Geochemistry, Torquay, England, 9–14 September 2007, Abstract O43.Google Scholar
  66. Rashby SE, Sessions AL, Summons RE, Newman DK (2007) Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc Natl Acad Sci 104: 15099–15104.PubMedCrossRefGoogle Scholar
  67. Raymond J, Blankenship RE (2004) Biosynthetic pathways, gene replacement and the antiquity of life. Geobiology 2: 199–203.CrossRefGoogle Scholar
  68. Riccardi A, Kump LR, Arthur MA, D’Hondt S (2007) Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr Palaeoclimatol Palaeoecol 248: 73–81.CrossRefGoogle Scholar
  69. Schopf J (2006) Fossil evidence of Archaean life. Philos Trans R Soc B Biol Sci 361: 869–885.CrossRefGoogle Scholar
  70. Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: Stromatolites and microfossils. Precambrian Res 158: 141–155.CrossRefGoogle Scholar
  71. Schulze T, Michaelis W (1990) Structure and origin of terpenoid hydrocarbons in some German coals. Org Geochem 16: 1051–1058.CrossRefGoogle Scholar
  72. Sheridan PP, Freeman KH, Brenchley JE (2003) Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 20: 1–14.CrossRefGoogle Scholar
  73. Sherwood Lollar B, Lacrampe-Couloume G, Telling J, McCollom TM, Slater GF (2006) Compound specific isotope analysis and the challenge for identifying life: The role of biosignatures and abiosignatures. Geochim Cosmochim Acta 70: A582.CrossRefGoogle Scholar
  74. Simoneit BRT (2004) Biomarkers (molecular fossils) as geochemical indicators of life. Adv Space Res 33: 1255–1261.CrossRefGoogle Scholar
  75. Sinninghe Damsté JS, Muyzer G, Abbas B, Rampen SW, Massé G, Allard WG, Belt ST, Robert J-M, Rowland SJ, Moldowan JM, Barbanti SM, Fago FJ, Denisevich P, Dahl J, Trindade LAF, Schouten S (2004) The rise of the rhizosolenid diatoms. Science 304: 584–587.CrossRefGoogle Scholar
  76. Sorhannus U (2007) A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Mar Micropaleontol 65: 1–12.CrossRefGoogle Scholar
  77. Summons RE, Bradley AS, Jahnke LL, Waldbauer JR (2006a) Steroids, triterpenoids and molecular oxygen. Philos Trans R Soc B Biol Sci 361: 951–968.CrossRefGoogle Scholar
  78. Summons RE, Brassell SC, Eglinton G, Evans E, Horodyski RJ, Robinson N, Ward DM (1988a) Distinctive hydrocarbon biomarkers from fossiliferous sediment of the late Proterozoic Walcott Member, Chuar Group, Grand Canyon, Arizona. Geochim Cosmochim Acta 52: 2625–2637.CrossRefGoogle Scholar
  79. Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacteial oxygenic photosynthesis. Nature 400: 554–557.PubMedCrossRefGoogle Scholar
  80. Summons RE, Love GD, Hays L, Cao C, Jin Y, Shen SZ, Grice K, Foster CB (2006b) Molecular evidence for prolonged photic zone euxinia at the Meishan and East Greenland sections of the Permian Triassic Boundary. Geochim Cosmochim Acta 70: A625.Google Scholar
  81. Summons RE, Powell TG, Boreham CJ (1988b) Petroleum geology and geochemistry of the Middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons. Geochim Cosmochim Acta 52: 1747–1763.CrossRefGoogle Scholar
  82. Summons RE, Thomas J, Maxwell JR, Boreham CJ. (1992) Secular and environmental constraints on the occurrence of dinosterane in sediments. Geochim Cosmochim Acta 56: 2437–2444.CrossRefGoogle Scholar
  83. Summons RE, Walter MR (1990) Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. Am J Sci 290-A: 212–244.Google Scholar
  84. Taylor DW, Li H, Dahl J, Fago FJ, Zinniker D, Moldowan JM (2006) Biogeochemical evidence for the presence of the angiosperm molecular fossil oleanane in Paleozoic and Mesozoic non-angiospermous fossils. Paleobiol 32: 179–190.CrossRefGoogle Scholar
  85. Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proc Natl Acad Sci 103: 5442–5447.PubMedCrossRefGoogle Scholar
  86. Ueno Y, Yamada K, Yoshida N, Maruyama S, Isozaki Y (2006) Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440: 516–519.PubMedCrossRefGoogle Scholar
  87. Ventura GT, Kenig F, Reddy CM, Schieber J, Frysinger GS, Nelson RK, Dinel E, Gaines RB, Schaeffer P (2007) Molecular evidence of Late Archean archaea and the presence of a subsurface hydrothermal biosphere. Proc Natl Acad Sci 104: 14260–14265.PubMedCrossRefGoogle Scholar
  88. Volkman JK (2005) Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org Geochem 36: 139–159.CrossRefGoogle Scholar
  89. Volkman JK (2006) Lipid markers for marine organic matter. In The Handbook of Environmental Chemistry, JK Volkman (ed.). Reactions and processes, Part N, Marine Organic Matter: Biomarkers, Isotopes and DNA. vol. 2. Berlin: Springer, pp. 27–70.Google Scholar
  90. Volkman JK, Eglinton G, Corner EDS (1980) Sterols and fatty acids of the marine diatom Biddulphia sinensis. Phytochemistry 19: 1809–1813.CrossRefGoogle Scholar
  91. Wang C Liu Y Liu H Zhu L, Shi Q (2005) Geochemical significance of the relative enrichment of pristane and the negative excursion of δ13CPr across the Permian-Triassic boundary at Meishan, China. Chin Sci Bull 50: 2213–2225.Google Scholar
  92. Wang C, Visscher H (2007) Abundance anomalies of aromatic biomarkers in the Permian-Triassic boundary section at Meishan, China – Evidence of end-Permian terrestrial ecosystem collapse. Palaeogeogr Palaeoclimatol Palaeoecol 252: 291–303.CrossRefGoogle Scholar
  93. Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29: 456–463.PubMedCrossRefGoogle Scholar
  94. Wellman CH, Osterloff PL, and Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425: 282–285.PubMedCrossRefGoogle Scholar
  95. Withers N (1983) Dinoflagellate sterols. In Marine Natural Products 5. PJ Scheuer (ed.). New York: Academic Press, pp. 87–130.Google Scholar
  96. Xie S, Pancost RD, Huang J, Wignall PB, Yu J, Tang X, Chen L, Huang X, Lai X (2007a) Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis. Geology 35: 1083–1086.CrossRefGoogle Scholar
  97. Xie S, Pancost RD, Huang X, Jiao D, Lu L, Huang J, Yang F, Evershed RP (2007b) Molecular and isotopic evidence for episodic environmental change across the Permo/Triassic boundary at Meishan in South China. Glob Planet Change 55: 56–65.CrossRefGoogle Scholar
  98. Xie S, Pancost RD, Yin H, Wang H, Evershed RP (2005) Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434: 494–497.PubMedCrossRefGoogle Scholar
  99. Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730.PubMedCrossRefGoogle Scholar
  100. Yin H, Feng Q, Lai X, Baud A, Tong J (2007) The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Glob Planet Change 55: 1–20.CrossRefGoogle Scholar
  101. Zhang S, Moldowan JM, Li M, Bian L, Zhang B, Wang F (2002) The abnormal distribution of the molecular fossils in the pre-Cambrian and Cambrian: its biological significance. Science China (Series D) 45: 193–200.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • C. C. Walters
    • 1
  • K. E. Peters
    • 2
  • J. M. Moldowan
    • 3
  1. 1.ExxonMobil Corporate Strategic ResearchAnnandaleUSA
  2. 2.U.S. Geological SurveyMenlo ParkUSA
  3. 3.Department of Geological & Environmental SciencesStanford UniversityStanfordUSA

Personalised recommendations