Skip to main content

Epidemiology of Hypertension

  • Reference work entry
Pediatric Nephrology

Abstract

Hypertension (HTN) is a significant global health issue. It is the major risk factor for atherosclerosis, leading to the development of cardiovascular disease (CVD). There is increasing evidence that HTN has its antecedents during childhood and that atherosclerosis is already present in adolescents. Thus early detection and intervention are crucial. HTN is also a risk factor for the progression to end-stage renal disease, a topic extremely relevant to pediatric nephrologists. While children are more likely to have secondary HTN, the prevalence of primary HTN appears to be increasing due to an epidemic of obesity. To identify children with HTN, clinicians should know normative values of blood pressure (BP) as well as the definition of HTN. Prevalence of HTN, factors influencing BP, and sequelae of childhood HTN are also reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Report of the Second Task Force on Blood Pressure Control in Children – 1987. Task Force on Blood Pressure Control in Children. National Heart, Lung, and Blood Institute, Bethesda, Maryland. Pediatrics 1987;79:1–25.

    Google Scholar 

  2. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 2004;114:555–576.

    Google Scholar 

  3. Update on the 1987 Task Force Report on High Blood Pressure in Children and Adolescents: a working group report from the National High Blood Pressure Education Program. National High Blood Pressure Education Program Working Group on Hypertension Control in Children and Adolescents. Pediatrics 1996;98:649–658.

    Google Scholar 

  4. NHANES: 2000 CDC Growth Charts: United States. http://www.cdc.gov/growthcharts/

  5. Hansen ML, Gunn PW, Kaelber DC. Underdiagnosis of hypertension in children and adolescents. JAMA 2007;298:874–879.

    Article  CAS  PubMed  Google Scholar 

  6. Mattoo TK. Epidemiology, risk factors, and etiology of hypertension in children and adolescents. In UpToDate Online 16.1. UpToDate®, Inc. Niaudet P (eds.). 2008

    Google Scholar 

  7. Association IPH: Blood Pressure Limits Chart. In, 2008 http://www.pediatrichypertension.org/BPLimitsChart.pdf

  8. Park MK, Menard SW, Yuan C. Comparison of auscultatory and oscillometric blood pressures. Arch Pediatr Adolesc Med 2001;155:50–53.

    CAS  PubMed  Google Scholar 

  9. Podoll A, Grenier M, Croix B, Feig DI. Inaccuracy in pediatric outpatient blood pressure measurement. Pediatrics 2007;119:e538–e543.

    Article  PubMed  Google Scholar 

  10. de Man SA, Andre JL, Bachmann H, Grobbee DE et al. Blood pressure in childhood: pooled findings of six European studies. J Hypertens 1991;9:109–114.

    Article  CAS  PubMed  Google Scholar 

  11. Blake KV, Gurrin LC, Evans SF, Newnham JP et al. Reference ranges for blood pressure in preschool Australians, obtained by oscillometry. J Paediatr Child Health 2000;36:41–46.

    Article  CAS  PubMed  Google Scholar 

  12. Menghetti E, Virdis R, Strambi M, Patriarca V et al. Blood pressure in childhood and adolescence: the Italian normal standards. Study Group on Hypertension’ of the Italian Society of Pediatrics’. J Hypertens 1999;17:1363–1372.

    Article  CAS  PubMed  Google Scholar 

  13. Jackson LV, Thalange NK, Cole TJ. Blood pressure centiles for Great Britain. Arch Dis Child 2007;92:298–303.

    Article  PubMed  Google Scholar 

  14. Ashrafi MR, Abdollahi M, Ahranjani BM, Shabanian R. Blood pressure distribution among healthy schoolchildren aged 6–13 years in Tehran. East Mediterr Health J 2005;11:968–976.

    CAS  PubMed  Google Scholar 

  15. Kelishadi R, Ardalan G, Gheiratmand R, Majdzadeh R et al. Blood pressure and its influencing factors in a national representative sample of Iranian children and adolescents: the CASPIAN Study. Eur J Cardiovasc Prev Rehabil 2006;13:956–963.

    Article  PubMed  Google Scholar 

  16. Turi S, Barath A, Boda K, Tichy M et al. Blood pressure reference tables for Hungarian adolescents aged 11–16 years. Kidney Blood Press Res 2008;31:63–69.

    Article  PubMed  Google Scholar 

  17. Zubrow AB, Hulman S, Kushner H, Falkner B. Determinants of blood pressure in infants admitted to neonatal intensive care units: a prospective multicenter study. Philadelphia Neonatal Blood Pressure Study Group. J Perinatol 1995;15:470–479.

    CAS  PubMed  Google Scholar 

  18. Kent AL, Kecskes Z, Shadbolt B, Falk MC. Blood pressure in the first year of life in healthy infants born at term. Pediatr Nephrol 2007;22:1743–1749.

    Article  PubMed  Google Scholar 

  19. Portman RJ, Yetman RJ, West MS. Efficacy of 24-hour ambulatory blood pressure monitoring in children. J Pediatr 1991;118:842–849.

    Article  CAS  PubMed  Google Scholar 

  20. Lurbe E, Cremades B, Rodriguez C, Torro MI et al. Factors related to quality of ambulatory blood pressure monitoring in a pediatric population. Am J Hypertens 1999;12:929–933.

    Article  CAS  PubMed  Google Scholar 

  21. Bald M, Kubel S, Rascher W. Validity and reliability of 24 h blood pressure monitoring in children and adolescents using a portable, oscillometric device. J Hum Hypertens 1994;8:363–366.

    CAS  PubMed  Google Scholar 

  22. Lurbe E, Aguilar F, Gomez A, Tacons J et al. Reproducibility of ambulatory blood pressure monitoring in children. J Hypertens Suppl 1993;11:S288–S289.

    Article  CAS  PubMed  Google Scholar 

  23. Lurbe E, Thijs L, Redon J, Alvarez V et al. Diurnal blood pressure curve in children and adolescents. J Hypertens 1996;14:41–46.

    Article  CAS  PubMed  Google Scholar 

  24. Barnes VA, Johnson MH, Dekkers JC, Treiber FA. Reproducibility of ambulatory blood pressure measures in African-American adolescents. Ethn Dis 2002;12:S3–S101–S106.

    PubMed  Google Scholar 

  25. Krmar RT, Berg UB. Long-term reproducibility of routine ambulatory blood pressure monitoring in stable pediatric renal transplant recipients. Am J Hypertens 2005;18:1408–1414.

    Article  PubMed  Google Scholar 

  26. Stergiou GS, Yiannes NJ, Rarra VC, Alamara CV. White-coat hypertension and masked hypertension in children. Blood Press Monit 2005;10:297–300.

    Article  PubMed  Google Scholar 

  27. Harshfield GA, Alpert BS, Pulliam DA, Somes GW et al. Ambulatory blood pressure recordings in children and adolescents. Pediatrics 1994;94:180–184.

    CAS  PubMed  Google Scholar 

  28. Lurbe E, Redon J, Liao Y, Tacons J et al. Ambulatory blood pressure monitoring in normotensive children. J Hypertens 1994;12:1417–1423.

    Article  CAS  PubMed  Google Scholar 

  29. Reichert H, Lindinger A, Frey O, Mortzeck J et al. Ambulatory blood pressure monitoring in healthy schoolchildren. Pediatr Nephrol 1995;9:282–286.

    Article  CAS  PubMed  Google Scholar 

  30. Weng KP, Hsieh KS, Huang SH, Lin CC. Oscillometric ambulatory blood pressure values in healthy children. Acta Paediatr Taiwan 2002;43:15–20.

    PubMed  Google Scholar 

  31. Soergel M, Kirschstein M, Busch C, Danne T et al. Oscillometric twenty-four-hour ambulatory blood pressure values in healthy children and adolescents: a multicenter trial including 1141 subjects. J Pediatr 1997;130:178–184.

    Article  CAS  PubMed  Google Scholar 

  32. O’Sullivan JJ, Derrick G, Griggs P, Foxall R et al. Ambulatory blood pressure in schoolchildren. Arch Dis Child 1999;80:529–532.

    Article  PubMed  Google Scholar 

  33. Wasilewski A, Zoch-Zwierz W, Tomaszenka B, Biernacka A. Reference values of 24 hour ambulatory blood pressure in healthy children in Poland. Pol Merkuriusz Lek 2004;17:451–456.

    Google Scholar 

  34. Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 1992;11:1305–1319.

    Article  CAS  PubMed  Google Scholar 

  35. Wuhl E, Witte K, Soergel M, Mehls O et al. Distribution of 24-h ambulatory blood pressure in children: normalized reference values and role of body dimensions. J Hypertens 2002;20:1995–2007.

    Article  PubMed  Google Scholar 

  36. Sorof JM, Poffenbarger T, Franco K, Portman R. Evaluation of white coat hypertension in children: importance of the definitions of normal ambulatory blood pressure and the severity of casual hypertension. Am J Hypertens 2001;14:855–860.

    Article  CAS  PubMed  Google Scholar 

  37. Kennedy SE, Mackie FE, Craig E, Kainer G. The choice of threshold limits for pediatric ambulatory blood pressure monitoring influences clinical decisions. Blood Press Monit 2006;11:119–123.

    Article  PubMed  Google Scholar 

  38. Chobanian AV, Bakris GL, Black HR, Cushman WC et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003;42:1206–1252.

    Article  CAS  PubMed  Google Scholar 

  39. O’Brien E, Asmar R, Beilin L, Imai Y et al. European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J Hypertens 2003;21:821–848.

    Article  PubMed  Google Scholar 

  40. Eicke M, Leumann EP. Ambulatory blood pressure recording in children and adolescents with a semi-automatic recording device. Helv Paediatr Acta 1989;43:433–441.

    CAS  PubMed  Google Scholar 

  41. Gompels C, Savage D. Home blood pressure monitoring in diabetes. Arch Dis Child 1992;67:636–639.

    Article  CAS  PubMed  Google Scholar 

  42. Bald M, Bohm W, Feldhoff C, Bonzel KE. Home blood pressure self-measurement in children and adolescents with renal replacement therapy. Klin Padiatr 2001;213:21–25.

    Article  CAS  PubMed  Google Scholar 

  43. Stergiou GS, Alamara CV, Salgami EV, Vaindirlis IN et al. Reproducibility of home and ambulatory blood pressure in children and adolescents. Blood Press Monit 2005;10:143–147.

    Article  PubMed  Google Scholar 

  44. Stergiou GS, Yiannes NG, Rarra VC. Validation of the Omron 705 IT oscillometric device for home blood pressure measurement in children and adolescents: the Arsakion School Study. Blood Press Monit 2006;11:229–234.

    Article  PubMed  Google Scholar 

  45. Stergiou GS, Yiannes NG, Rarra VC, Panagiotakos DB. Home blood pressure normalcy in children and adolescents: the Arsakeion School study. J Hypertens 2007;25:1375–1379.

    Article  CAS  PubMed  Google Scholar 

  46. Stergiou GS, Rarra VC, Yiannes NG. Changing relationship between home and office blood pressure with increasing age in children: the Arsakeion School study. Am J Hypertens 2008;21:41–46.

    Article  PubMed  Google Scholar 

  47. Verberk WJ, Kroon AA, Kessels AG, de Leeuw PW. Home blood pressure measurement: a systematic review. J Am Coll Cardiol 2005;46:743–751.

    Article  PubMed  Google Scholar 

  48. Bald M, Hoyer PF. Measurement of blood pressure at home: survey among pediatric nephrologists. Pediatr Nephrol 2001;16:1058–1062.

    Article  CAS  PubMed  Google Scholar 

  49. Wuhl E, Hadtstein C, Mehls O, Schaefer F. Home, clinic, and ambulatory blood pressure monitoring in children with chronic renal failure. Pediatr Res 2004;55:492–497.

    Article  PubMed  Google Scholar 

  50. Raitakari OT, Juonala M, Kahonen M, Taittonen L et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: the Cardiovascular Risk in Young Finns Study. JAMA 2003;290:2277–2283.

    Article  CAS  PubMed  Google Scholar 

  51. Li S, Chen W, Srinivasan SR, Bond MG et al. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the Bogalusa Heart Study. JAMA 2003;290:2271–2276.

    Article  CAS  PubMed  Google Scholar 

  52. Davis PH, Dawson JD, Riley WA, Lauer RM. Carotid intimal-medial thickness is related to cardiovascular risk factors measured from childhood through middle age: The Muscatine Study. Circulation 2001;104:2815–2819.

    Article  CAS  PubMed  Google Scholar 

  53. Sorof JM. Definitions of hypertension in children. In Pediatric hypertension. Portman RJ, Sorof JM, Ingelfinger JR (eds.). Humana, Totowa, New Jersey, 2004, pp 145–158.

    Chapter  Google Scholar 

  54. Muntner P, He J, Cutler JA, Wildman RP et al. Trends in blood pressure among children and adolescents. JAMA 2004;291:2107–2113.

    Article  CAS  PubMed  Google Scholar 

  55. Ford ES, Mokdad AH, Ajani UA. Trends in risk factors for cardiovascular disease among children and adolescents in the United States. Pediatrics 2004;114:1534–1544.

    Article  PubMed  Google Scholar 

  56. Din-Dzietham R, Liu Y, Bielo MV, Shamsa F. High blood pressure trends in children and adolescents in national surveys, 1963 to 2002. Circulation 2007;116:1488–1496.

    Article  PubMed  Google Scholar 

  57. Zachariah PK, Sheps SG, Ilstrup DM, Long CR et al. Blood pressure load–a better determinant of hypertension. Mayo Clin Proc 1988;63:1085–1091.

    Article  CAS  PubMed  Google Scholar 

  58. White WB, Dey HM, Schulman P. Assessment of the daily blood pressure load as a determinant of cardiac function in patients with mild-to-moderate hypertension. Am Heart J 1989;118:782–795.

    Article  CAS  PubMed  Google Scholar 

  59. White WB, Schulman P, McCabe EJ, Dey HM. Average daily blood pressure, not office blood pressure, determines cardiac function in patients with hypertension. JAMA 1989;261:873–877.

    Article  CAS  PubMed  Google Scholar 

  60. Sinaiko AR, Gomez-Marin O, Prineas RJ. Prevalence of “significant” hypertension in junior high school-aged children: the Children and Adolescent Blood Pressure Program. J Pediatr 1989;114:664–669.

    Article  CAS  PubMed  Google Scholar 

  61. Adrogue HE, Sinaiko AR. Prevalence of hypertension in junior high school-aged children: effect of new recommendations in the 1996 Updated Task Force Report. Am J Hypertens 2001;14:412–414.

    Article  CAS  PubMed  Google Scholar 

  62. Sorof JM, Lai D, Turner J, Poffenbarger T et al. Overweight, ethnicity, and the prevalence of hypertension in school-aged children. Pediatrics 2004;113:475–482.

    Article  PubMed  Google Scholar 

  63. McNiece KL, Poffenbarger TS, Turner JL, Franco KD et al. Prevalence of hypertension and pre-hypertension among adolescents. J Pediatr 2007;150:640–644, 644 e641.

    Article  PubMed  Google Scholar 

  64. Sorof JM, Poffenbarger T, Franco K, Bernard L et al. Isolated systolic hypertension, obesity, and hyperkinetic hemodynamic states in children. J Pediatr 2002;140:660–666.

    Article  PubMed  Google Scholar 

  65. Ogden CL, Flegal KM, Carroll MD, Johnson CL. Prevalence and trends in overweight among US children and adolescents, 1999–2000. JAMA 2002;288:1728–1732.

    Article  PubMed  Google Scholar 

  66. Chiolero A, Bovet P, Paradis G, Paccaud F. Has blood pressure increased in children in response to the obesity epidemic? Pediatrics 2007;119:544–553.

    Article  PubMed  Google Scholar 

  67. Saleh EA, Mahfouz AA, Tayel KY, Naguib MK et al. Hypertension and its determinants among primary-school children in Kuwait: an epidemiological study. East Mediterr Health J 2000;6:333–337.

    CAS  PubMed  Google Scholar 

  68. Antal M, Regoly-Merei A, Nagy K, Greiner E et al. Representative study for the evaluation of age- and gender-specific anthropometric parameters and blood pressure in an adolescent Hungarian population. Ann Nutr Metab 2004;48:307–313.

    Article  CAS  PubMed  Google Scholar 

  69. Paradis G, Lambert M, O’Loughlin J, Lavallee C et al. Blood pressure and adiposity in children and adolescents. Circulation 2004;110:1832–1838.

    Article  PubMed  Google Scholar 

  70. Genovesi S, Giussani M, Pieruzzi F, Vigorita F et al. Results of blood pressure screening in a population of school-aged children in the province of Milan: role of overweight. J Hypertens 2005;23:493–497.

    Article  CAS  PubMed  Google Scholar 

  71. Chiolero A, Madeleine G, Gabriel A, Burnier M et al. Prevalence of elevated blood pressure and association with overweight in children of a rapidly developing country. J Hum Hypertens 2007;21:120–127.

    Article  CAS  PubMed  Google Scholar 

  72. Kardas P, Kufelnicka M, Herczynski D. Prevalence of arterial hypertension in children aged 9–14 years, residents of the city of Lodz. Kardiol Pol 2005;62:211–216; discussion 216–217.

    PubMed  Google Scholar 

  73. Ramos E, Barros H. Prevalence of hypertension in 13-year-old adolescents in Porto, Portugal. Rev Port Cardiol 2005;24:1075–1087.

    PubMed  Google Scholar 

  74. Jafar TH, Islam M, Poulter N, Hatcher J et al. Children in South Asia have higher body mass-adjusted blood pressure levels than white children in the United States: a comparative study. Circulation 2005;111:1291–1297.

    Article  PubMed  Google Scholar 

  75. Subhi MD. Blood pressure profiles and hypertension in Iraqi primary school children. Saudi Med J 2006;27:482–486.

    PubMed  Google Scholar 

  76. Makgae PJ, Monyeki KD, Brits SJ, Kemper HC et al. Somatotype and blood pressure of rural South African children aged 6–13 years: Ellisras longitudinal growth and health study. Ann Hum Biol 2007;34:240–251.

    Article  CAS  PubMed  Google Scholar 

  77. Facchini F, BedogniG, Fiori GGalletti L et al. Prevalence of overweight and cardiovascular risk factors in rural and urban children from Central Asia: the Kazakhstan health and nutrition examination survey. Am J Hum Biol 2007;19:809–820.

    Article  PubMed  Google Scholar 

  78. Akis N, Pala K, Irgil E, Utku AM et al. Prevalence and risk factors of hypertension among schoolchildren aged 12–14 years in Bursa, Turkey. Saudi Med J 2007;28:1263–1268.

    PubMed  Google Scholar 

  79. Watkins D, McCarron P, Murray L, Cran G et al. Trends in blood pressure over 10 years in adolescents: analyses of cross sectional surveys in the Northern Ireland Young Hearts project. BMJ 2004;329:139.

    Article  PubMed  Google Scholar 

  80. Feld LG, Springate JE. Hypertension in children. Curr Probl Pediatr 1988;18:317–373.

    CAS  PubMed  Google Scholar 

  81. Rames LK, Clarke WR, Connor WE, Reiter MA et al. Normal blood pressure and the evaluation of sustained blood pressure elevation in childhood: the Muscatine study. Pediatrics 1978;61:245–251.

    CAS  PubMed  Google Scholar 

  82. Pickering TG. White coat hypertension. Curr Opin Nephrol Hypertens 1996;5:192–198.

    Article  CAS  PubMed  Google Scholar 

  83. Hornsby JL, Mongan PF, Taylor AT, Treiber FA. ‘White coat’ hypertension in children. J Fam Pract 1991;33:617–623.

    CAS  PubMed  Google Scholar 

  84. Nishibata K, Nagashima M, Tsuji A, Hasegawa S et al. Comparison of casual blood pressure and twenty-four-hour ambulatory blood pressure in high school students. J Pediatr 1995;127:34–39.

    Article  CAS  PubMed  Google Scholar 

  85. Yamaguchi Y, Awazu M, Matsuoka S, Maeda J et al. White coat hypertension in two adolescents. Pediatr Nephrol 1999;13:60–62.

    Article  CAS  PubMed  Google Scholar 

  86. Sorof JM, Portman RJ. White coat hypertension in children with elevated casual blood pressure. J Pediatr 2000;137:493–497.

    Article  CAS  PubMed  Google Scholar 

  87. Matsuoka S, Kawamura K, Honda M, Awazu M. White coat effect and white coat hypertension in pediatric patients. Pediatr Nephrol 2002;17:950–953.

    Article  PubMed  Google Scholar 

  88. Stabouli S, Kotsis V, Toumanidis S, Papamichael C et al. White-coat and masked hypertension in children: association with target-organ damage. Pediatr Nephrol 2005;20:1151–1155.

    Article  PubMed  Google Scholar 

  89. McNiece KL, Gupta-Malhotra M, Samuels J, Bell C et al. Left ventricular hypertrophy in hypertensive adolescents: analysis of risk by 2004 National High Blood Pressure Education Program Working Group staging criteria. Hypertension 2007;50:392–395.

    Article  CAS  PubMed  Google Scholar 

  90. Kavey RE, Kveselis DA, Atallah N, Smith FC. White coat hypertension in childhood: evidence for end-organ effect. J Pediatr 2007;150:491–497.

    Article  PubMed  Google Scholar 

  91. Pickering TG, Davidson K, Schwartz W, Gerin JE. Masked hypertension. Hypertension 2002;40:795–796.

    Article  CAS  PubMed  Google Scholar 

  92. Liu JE, Roman MJ, Schwartz R, Schwartz Pini JE et al. Cardiac and arterial target organ damage in adults with elevated ambulatory and normal office blood pressure. Ann Intern Med 1999;131:564–572.

    CAS  PubMed  Google Scholar 

  93. Sega R, Trocino G, Lanzarotti A, Carugo S et al. Alterations of cardiac structure in patients with isolated office, ambulatory, or home hypertension: Data from the general population (Pressione Arteriose Monitorate E Loro Associazioni [PAMELA] Study). Circulation 2001;104:1385–1392.

    Article  CAS  PubMed  Google Scholar 

  94. Matsuoka S, Awazu M. Masked hypertension in children and young adults. Pediatr Nephrol 2004;19:651–654.

    Article  PubMed  Google Scholar 

  95. Lurbe E, Torro I, Alvarez V, Nawrot T et al. Prevalence, persistence, and clinical significance of masked hypertension in youth. Hypertension 2005;45:493–498.

    Article  CAS  PubMed  Google Scholar 

  96. Maggio AB, Aggoun Y, Marchand LM, Martin X et al. Associations among obesity, blood pressure, and left ventricular mass. J Pediatr 2008;152:489–493.

    Article  PubMed  Google Scholar 

  97. Calzolari A, Giordano U, Matteucci MC, Pastore E et al. Hypertension in young patients after renal transplantation: ambulatory blood pressure monitoring versus casual blood pressure. Am J Hypertens 1998;11:497–501.

    Article  CAS  PubMed  Google Scholar 

  98. Giordano U, Matteucci MC, Calzolari A, Turchetta A et al. Ambulatory blood pressure monitoring in children with aortic coarctation and kidney transplantation. J Pediatr 2000;136:520–523.

    Article  CAS  PubMed  Google Scholar 

  99. Pechere-Bertschi A, Burnier M. Female sex hormones, salt, and blood pressure regulation. Am J Hypertens 2004;17:994–1001.

    Article  CAS  PubMed  Google Scholar 

  100. Field AE, Cook NR, Gillman MW. Weight status in childhood as a predictor of becoming overweight or hypertensive in early adulthood. Obes Res 2005;13:163–169.

    Article  PubMed  Google Scholar 

  101. Dasgupta K, O’Loughlin J, Chen S, Karp I et al. Emergence of sex differences in prevalence of high systolic blood pressure: analysis of a longitudinal adolescent cohort. Circulation 2006;114:2663–2670.

    Article  PubMed  Google Scholar 

  102. Portman RJ, Lugo-Miro VI, Ikle D, Sanders JM, Jr. Diagnosis of adolescent hypertension on initial screening by the use of height age. J Adolesc Health Care 1990;11:215–222.

    Article  CAS  PubMed  Google Scholar 

  103. Rosner B, Prineas RJ, Loggie JM, Daniels SR. Blood pressure nomograms for children and adolescents, by height, sex, and age, in the United States. J Pediatr 1993;123:871–886.

    Article  CAS  PubMed  Google Scholar 

  104. Voors AW, Foster TA, Frerichs RR, Webber LS et al. Studies of blood pressures in children, ages 5–14 years, in a total biracial community: the Bogalusa Heart Study. Circulation 1976;54:319–327.

    Article  CAS  PubMed  Google Scholar 

  105. Lauer RM, Clarke WR. Childhood risk factors for high adult blood pressure: the Muscatine Study. Pediatrics 1989;84:633–641.

    CAS  PubMed  Google Scholar 

  106. de Swiet M, Fayers P, Shinebourne EA. Blood pressure in first 10 years of life: the Brompton study. BMJ 1992;304:23–26.

    Article  CAS  PubMed  Google Scholar 

  107. Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics 1999;103:1175–1182.

    Article  CAS  PubMed  Google Scholar 

  108. Lurbe E, Invitti C, Torro I, Maronati A et al. The impact of the degree of obesity on the discrepancies between office and ambulatory blood pressure values in youth. J Hypertens 2006;24:1557–1564.

    Article  CAS  PubMed  Google Scholar 

  109. Brion MA, Ness AR, Davey Smith G, Leary SD. Association between body composition and blood pressure in a contemporary cohort of 9-year-old children. J Hum Hypertens 2007;21:283–290.

    CAS  PubMed  Google Scholar 

  110. Sugiyama T, Xie D, Graham-Maar RC, Inoue K et al. Dietary and lifestyle factors associated with blood pressure among U.S. adolescents. J Adolesc Health 2007;40:166–172.

    Article  PubMed  Google Scholar 

  111. Appel LJ, Brands MW, Daniels SR, Karanja N et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 2006;47:296–308.

    Article  CAS  PubMed  Google Scholar 

  112. Rocchini AP, Katch V, Anderson J, Hinderliter J et al. Blood pressure in obese adolescents: effect of weight loss. Pediatrics 1988;82:16–23.

    CAS  PubMed  Google Scholar 

  113. Shear CL, Freedman DS, Burke GL, Harsha DW et al. Body fat patterning and blood pressure in children and young adults. The Bogalusa Heart Study. Hypertension 1987;9:236–244.

    Article  CAS  PubMed  Google Scholar 

  114. Sorof JM. Prevalence and consequence of systolic hypertension in children. Am J Hypertens 2002;15:57S–60S.

    Article  PubMed  Google Scholar 

  115. Kanai H, Matsuzawa Y, Tokunaga K, Keno Y et al. Hypertension in obese children: fasting serum insulin levels are closely correlated with blood pressure. Int J Obes 1990;14:1047–1056.

    CAS  PubMed  Google Scholar 

  116. Bao W, Srinivasan SR, Berenson GS. Persistent elevation of plasma insulin levels is associated with increased cardiovascular risk in children and young adults. The Bogalusa Heart Study. Circulation 1996;93:54–59.

    Article  CAS  PubMed  Google Scholar 

  117. Sinaiko AR, Steinberger J, Moran A, Hong CP et al. Influence of insulin resistance and body mass index at age 13 on systolic blood pressure, triglycerides, and high-density lipoprotein cholesterol at age 19. Hypertension 2006;48:730–736.

    Article  CAS  PubMed  Google Scholar 

  118. Lurbe E, Torro I, Aguilar F, Alvarez J et al. Added impact of obesity and insulin resistance in nocturnal blood pressure elevation in children and adolescents. Hypertension 2008;51:635–641.

    Article  CAS  PubMed  Google Scholar 

  119. Lurbe E, Alvarez V, Liao Y, Tacons J et al. The impact of obesity and body fat distribution on ambulatory blood pressure in children and adolescents. Am J Hypertens 1998;11:418–424.

    Article  CAS  PubMed  Google Scholar 

  120. Stabouli S, Kotsis V, Papamichael C, Constantopoulos A et al. Adolescent obesity is associated with high ambulatory blood pressure and increased carotid intimal-medial thickness. J Pediatr 2005;147:651–656.

    Article  PubMed  Google Scholar 

  121. Leiter LA, Abbott D, Campbell NR, Mendelson R et al. Lifestyle modifications to prevent and control hypertension. 2. Recommendations on obesity and weight loss. Canadian Hypertension Society, Canadian Coalition for High Blood Pressure Prevention and Control, Laboratory Centre for Disease Control at Health Canada, Heart and Stroke Foundation of Canada. CMAJ 1999;160:S7–S12.

    CAS  PubMed  Google Scholar 

  122. Ribeiro MM, Silva AG, Santos NS, Guazzelle I et al. Diet and exercise training restore blood pressure and vasodilatory responses during physiological maneuvers in obese children. Circulation 2005;111:1915–1923.

    Article  PubMed  Google Scholar 

  123. Mamun AA, Lawlor DA, O’Callaghan MJ, Williams GM et al. Effect of body mass index changes between ages 5 and 14 on blood pressure at age 14: findings from a birth cohort study. Hypertension 2005;45:1083–1087.

    Article  CAS  PubMed  Google Scholar 

  124. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med 2002;136:493–503.

    PubMed  Google Scholar 

  125. Marti B, Vartiainen E. Relation between leisure time exercise and cardiovascular risk factors among 15-year-olds in eastern Finland. J Epidemiol Commun. Health 1989;43:228–233.

    Article  CAS  Google Scholar 

  126. Klesges RC, Haddock CK, Eck LH. A multimethod approach to the measurement of childhood physical activity and its relationship to blood pressure and body weight. J Pediatr 1990;116:888–893.

    Article  CAS  PubMed  Google Scholar 

  127. Macintyre S, Watt G, West P, Ecob R. Correlates of blood pressure in 15 year olds in the west of Scotland. J Epidemiol Commun. Health 1991;45:143–147.

    Article  CAS  Google Scholar 

  128. Boreham C, Twisk J, van Mechelen W, Savage M et al. Relationships between the development of biological risk factors for coronary heart disease and lifestyle parameters during adolescence: The Northern Ireland Young Hearts Project. Public Health 1999;113:7–12.

    CAS  PubMed  Google Scholar 

  129. Andersen LB, Harro M, Sardinha LB, Froberg K et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lancet 2006;368:299–304.

    Article  PubMed  Google Scholar 

  130. Leary SD, Ness AR, Smith GD, Mattocks C et al. Physical activity and blood pressure in childhood: findings from a population-based study. Hypertension 2008;51:92–98.

    Article  CAS  PubMed  Google Scholar 

  131. Kelley GA, Kelley KS, Tran ZV. The effects of exercise on resting blood pressure in children and adolescents: a meta-analysis of randomized controlled trials. Prev Cardiol 2003;6:8–16.

    Article  PubMed  Google Scholar 

  132. Torrance B, McGuire KA, Lewanczuk R, McGavock J. Overweight, physical activity and high blood pressure in children: a review of the literature. Vasc Health Risk Manag 2007;3:139–149.

    PubMed  Google Scholar 

  133. Pardee PE, Norman GJ, Lustig RH, Preud’homme D et al. Television viewing and hypertension in obese children. Am J Prev Med 2007;33:439–443.

    Article  PubMed  Google Scholar 

  134. Cleroux J, Feldman RD, Petrella RJ. Lifestyle modifications to prevent and control hypertension. 4. Recommendations on physical exercise training. Canadian Hypertension Society, Canadian Coalition for High Blood Pressure Prevention and Control, Laboratory Centre for Disease Control at Health Canada, Heart and Stroke Foundation of Canada. CMAJ 1999;160:S21–S28.

    CAS  PubMed  Google Scholar 

  135. Hernelahti M, Levalahti E, Simonen RL, Kaprio J et al. Relative roles of heredity and physical activity in adolescence and adulthood on blood pressure. J Appl Physiol 2004;97:1046–1052.

    Article  PubMed  Google Scholar 

  136. Burt VL, Whelton P, Roccella EJ, Brown C et al. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988–1991. Hypertension 1995;25:305–313.

    Article  CAS  PubMed  Google Scholar 

  137. Meininger JC, Liehr P, Mueller WH, Chan W et al. Predictors of ambulatory blood pressure: identification of high-risk adolescents. ANS Adv Nurs Sci 1998;20:50–64.

    CAS  PubMed  Google Scholar 

  138. Rosner B, Prineas R, Daniels SR, Loggie J. Blood pressure differences between blacks and whites in relation to body size among US children and adolescents. Am J Epidemiol 2000;151:1007–1019.

    Article  CAS  PubMed  Google Scholar 

  139. Jago R, Harrell JS, McMurray RG, Edelstein S et al. Prevalence of abnormal lipid and blood pressure values among an ethnically diverse population of eighth-grade adolescents and screening implications. Pediatrics 2006;117:2065–2073.

    Article  PubMed  Google Scholar 

  140. Harshfield GA, Wilson ME. Ethnic differenced in childhood blood pressure. In Pediatric hypertension. Portman RJ, Sorof JM, Ingelfinger JR (eds.). Totowa, New Jersey, Human, 2004, pp 293–305.

    Chapter  Google Scholar 

  141. Park MK, Menard SW, Yuan C. Comparison of blood pressure in children from three ethnic groups. Am J Cardiol 2001;87:1305–1308.

    Article  CAS  PubMed  Google Scholar 

  142. Dekkers JC, Snieder H, Van Den Oord EJ, Treiber FA. Moderators of blood pressure development from childhood to adulthood: a 10-year longitudinal study. J Pediatr 2002;141:770–779.

    Article  PubMed  Google Scholar 

  143. Berenson GS, Voors AW, Webber LS, Dalferes ER, Jr. et al. Racial differences of parameters associated with blood pressure levels in children–the Bogalusa heart study. Metabolism 1979;28:1218–1228.

    Article  CAS  PubMed  Google Scholar 

  144. Daniels SR, McMahon RP, Obarzanek E, Waclawiw MA et al. Longitudinal correlates of change in blood pressure in adolescent girls. Hypertension 1998;31:97–103.

    Article  CAS  PubMed  Google Scholar 

  145. Jung FF, Ingelfinger JR. Hypertension in childhood and adolescence. Pediatr Rev 1993;14:169–179.

    Article  CAS  PubMed  Google Scholar 

  146. Stamler R, Stamler J, Riedlinger WF, Algera G et al. Family (parental) history and prevalence of hypertension. Results of a nationwide screening program. JAMA 1979;241:43–46.

    Article  CAS  PubMed  Google Scholar 

  147. Longini IM, Jr., Higgins MW, Hinton PC, Moll PP et al. Environmental and genetic sources of familial aggregation of blood pressure in Tecumseh, Michigan. Am J Epidemiol 1984;120:131–144.

    PubMed  Google Scholar 

  148. Morton NE, Gulbrandsen CL, Rao DC, Rhoads GG et al. Determinants of blood pressure in Japanese-American Families. Hum Genet 1980;53:261–266.

    Article  CAS  PubMed  Google Scholar 

  149. Biron P, Mongeau JG, Bertrand D. Familial aggregation of blood pressure in 558 adopted children. Can Med Assoc J 1976;115:773–774.

    CAS  PubMed  Google Scholar 

  150. Rice T, Vogler GP, Perusse L, Bouchard C et al. Cardiovascular risk factors in a French Canadian population: resolution of genetic and familial environmental effects on blood pressure using twins, adoptees, and extensive information on environmental correlates. Genet Epidemiol 1989;6:571–588.

    Article  CAS  PubMed  Google Scholar 

  151. Feinleib M, Garrison RJ, Fabsitz R, Christian JC et al. The NHLBI twin study of cardiovascular disease risk factors: methodology and summary of results. Am J Epidemiol 1977;106:284–285.

    CAS  PubMed  Google Scholar 

  152. Fuentes RM, Notkola IL, Shemeikka S, Tuomilehto J et al. Tracking of systolic blood pressure during childhood: a 15-year follow-up population-based family study in eastern Finland. J Hypertens 2002;20:195–202.

    Article  CAS  PubMed  Google Scholar 

  153. Taittonen L, Uhari M, Kontula K, Kainulainen K et al. Angiotensin converting enzyme gene insertion/deletion polymorphism, angiotensinogen gene polymorphisms, family history of hypertension, and childhood blood pressure. Am J Hypertens 1999;12:858–866.

    Article  CAS  PubMed  Google Scholar 

  154. van den Elzen AP, de Ridder MA, Grobbee DE, Hofman A et al. Families and the natural history of blood pressure. A 27-year follow-up study. Am J Hypertens 2004;17:936–940.

    PubMed  Google Scholar 

  155. Wang N-Y, Young JH, Meoni LA, Ford DE et al. Blood Pressure Change and Risk of Hypertension Associated With Parental Hypertension: The Johns Hopkins Precursors Study. Arch Intern Med 2008;168:643–648.

    Article  PubMed  Google Scholar 

  156. Li R, Alpert BS, Walker SS, Somes GW. Longitudinal relationship of parental hypertension with body mass index, blood pressure, and cardiovascular reactivity in children. J Pediatr 2007;150:498–502.

    Article  PubMed  Google Scholar 

  157. Kupper N, Willemsen G, Riese H, Posthuma D et al. Heritability of daytime ambulatory blood pressure in an extended twin design. Hypertension 2005;45:80–85.

    CAS  PubMed  Google Scholar 

  158. Robinson RF, Batisky DL, Hayes JR, Nahata MC et al. Significance of heritability in primary and secondary pediatric hypertension. Am J Hypertens 2005;18:917–921.

    Article  PubMed  Google Scholar 

  159. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001;104:545–556.

    Article  CAS  PubMed  Google Scholar 

  160. Iwai N, Baba S, Mannami T, Katsuya T et al. Association of sodium channel gamma-subunit promoter variant with blood pressure. Hypertension 2001;38:86–89.

    Article  CAS  PubMed  Google Scholar 

  161. Baker EH, Duggal A, Dong Y, Ireson NJ et al. Amiloride, a specific drug for hypertension in black people with T594M variant? Hypertension 2002;40:13–17.

    Article  CAS  PubMed  Google Scholar 

  162. Büsst CJ, Scurrah KJ, Ellis JA, Harrap SB. Selective genotyping reveals association between the epithelial sodium channel gamma-subunit and systolic blood pressure. Hypertension 2007;50:672–678.

    Article  PubMed  CAS  Google Scholar 

  163. Tobin MD, Raleigh SM, Newhouse S, Braund P et al. Association of WNK1 gene polymorphisms and haplotypes with ambulatory blood pressure in the general population. Circulation 2005;112:3423–3429.

    Article  CAS  PubMed  Google Scholar 

  164. Ji W, Foo JN, O’Roak BJ, Zhao H et al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat Genet 2008;40:592–599.

    Article  CAS  PubMed  Google Scholar 

  165. Binder A. A review of the genetics of essential hypertension. Curr Opin Cardiol 2007;22:176–184.

    Article  PubMed  Google Scholar 

  166. Pravenec M, Petretto E. Insight into the genetics of hypertension, a core component of the metabolic syndrome. Curr Opin Clin Nutr Metab Care 2008;11:393–397.

    Article  CAS  PubMed  Google Scholar 

  167. Dickson ME, Sigmund CD. Genetic basis of hypertension: revisiting angiotensinogen. Hypertension 2006;48:14–20.

    Article  CAS  PubMed  Google Scholar 

  168. Agerholm-Larsen B, Nordestgaard BG, Tybjaerg-Hansen A. ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arterioscler Thromb Vasc Biol 2000;20:484–492.

    Article  CAS  PubMed  Google Scholar 

  169. Gratze G, Fortin J, Labugger R, Binder A et al. beta-2 Adrenergic receptor variants affect resting blood pressure and agonist-induced vasodilation in young adult Caucasians. Hypertension 1999;33:1425–1430.

    Article  CAS  PubMed  Google Scholar 

  170. Snapir A, Heinonen P, Tuomainen TP, Lakka TA et al. G-protein beta3 subunit C825T polymorphism: no association with risk for hypertension and obesity. J Hypertens 2001;19:2149–2155.

    Article  CAS  PubMed  Google Scholar 

  171. Beeks E, Kessels AG, Kroon AA, van der Klauw MM et al. Genetic predisposition to salt-sensitivity: a systematic review. J Hypertens 2004;22:1243–1249.

    Article  CAS  PubMed  Google Scholar 

  172. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447:661–678.

    Google Scholar 

  173. Levy D, Larson MG, Benjamin EJ, Newton-Cheh C et al. Framingham Heart Study 100K Project: genome-wide associations for blood pressure and arterial stiffness. BMC Med Genet 2007;8 Suppl 1:S3.

    Article  PubMed  CAS  Google Scholar 

  174. Barker DJ, Winter PD, Osmond C, Margetts B et al. Weight in infancy and death from ischaemic heart disease. Lancet 1989;2:577–580.

    Article  CAS  PubMed  Google Scholar 

  175. Huxley R, Neil A, Collins R. Unravelling the fetal origins hypothesis: is there really an inverse association between birthweight and subsequent blood pressure? Lancet 2002;360:659–665.

    Article  PubMed  Google Scholar 

  176. Barker DJ. The fetal origins of hypertension. J Hypertens Suppl 14: 1996;S117–S120.

    CAS  PubMed  Google Scholar 

  177. Law CM, Shiell AW. Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens 1996;14:935–941.

    Article  CAS  PubMed  Google Scholar 

  178. Huxley RR, Shiell AW, Law CM. The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens 2000;18:815–831.

    Article  CAS  PubMed  Google Scholar 

  179. Whincup PH, Cook DG, Shaper AG. Early influences on blood pressure: a study of children aged 5–7 years. BMJ 1989;299:587–591.

    Article  CAS  PubMed  Google Scholar 

  180. Martyn CN, Barker DJ, Jespersen S, Greenwald S et al. Growth in utero, adult blood pressure, and arterial compliance. Br Heart J 1995;73:116–121.

    Article  CAS  PubMed  Google Scholar 

  181. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ 1990;301:259–262.

    Article  CAS  PubMed  Google Scholar 

  182. Whincup PH, Cook DG, Papacosta O. Do maternal and intrauterine factors influence blood pressure in childhood? Arch Dis Child 1992;67:1423–1429.

    Article  CAS  PubMed  Google Scholar 

  183. Lawlor DA, Smith GD. Early life determinants of adult blood pressure. Curr Opin Nephrol Hypertens 2005;14:259–264.

    Article  PubMed  Google Scholar 

  184. Lawlor DA, Hubinette A, Tynelius P, Leon DA et al. Associations of gestational age and intrauterine growth with systolic blood pressure in a family-based study of 386,485 men in 331,089 families. Circulation 2007;115:562–568.

    Article  PubMed  Google Scholar 

  185. Law CM, Shiell AW, Newsome CA, Syddall HE et al. Fetal, infant, and childhood growth and adult blood pressure: a longitudinal study from birth to 22 years of age. Circulation 2002;105:1088–1092.

    Article  CAS  PubMed  Google Scholar 

  186. Langenberg C, Hardy R, Kuh D, Wadsworth ME. Influence of height, leg and trunk length on pulse pressure, systolic and diastolic blood pressure. J Hypertens 2003;21:537–543.

    Article  CAS  PubMed  Google Scholar 

  187. Lever AF, Harrap SB. Essential hypertension: a disorder of growth with origins in childhood? J Hypertens 1992;10:101–120.

    Article  CAS  PubMed  Google Scholar 

  188. Rostand SG, Cliver SP, Goldenberg RL. Racial disparities in the association of foetal growth retardation to childhood blood pressure. Nephrol Dial Transplant 2005;20:1592–1597.

    Article  PubMed  Google Scholar 

  189. Hemachandra AH, Klebanoff MA, Furth SL. Racial disparities in the association between birth weight in the term infant and blood pressure at age 7 years: results from the collaborative perinatal project. J Am Soc Nephrol 2006;17:2576–2581.

    Article  PubMed  Google Scholar 

  190. Cruickshank JK, Mzayek F, Liu L, Kieltyka L et al. Origins of the “black/white” difference in blood pressure: roles of birth weight, postnatal growth, early blood pressure, and adolescent body size: the Bogalusa heart study. Circulation 2005;111:1932–1937.

    Article  CAS  PubMed  Google Scholar 

  191. Brenner BM, Garcia DL, Anderson S. Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1988;1:335–347.

    Article  CAS  PubMed  Google Scholar 

  192. Hinchliffe SA, Lynch MR, Sargent PH, Howard CV et al. The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol 1992;99:296–301.

    Article  CAS  PubMed  Google Scholar 

  193. Hughson M, Farris AB, 3rd, Douglas-Denton R, Hoy WE et al. Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 2003;63:2113–2122.

    Article  PubMed  Google Scholar 

  194. Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 2004;7:17–25.

    Article  PubMed  Google Scholar 

  195. Keller G, Zimmer G, Mall G, Ritz E et al. Nephron number in patients with primary hypertension. N Engl J Med 2003;348:101–108.

    Article  PubMed  Google Scholar 

  196. Douglas-Denton RN, McNamara BJ, Hoy WE, Hughson MD et al. Does nephron number matter in the development of kidney disease? Ethn Dis 2006;16:S2–40–45.

    PubMed  Google Scholar 

  197. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 1988;297:319–328.

    Google Scholar 

  198. Midgley JP, Matthew AG, Greenwood CM, Logan AG. Effect of reduced dietary sodium on blood pressure: a meta-analysis of randomized controlled trials. JAMA 1996;275:1590–1597.

    Article  CAS  PubMed  Google Scholar 

  199. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med 2001;344:3–10.

    Article  CAS  PubMed  Google Scholar 

  200. He FJ, MacGregor GA. Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev 2004:CD004937.

    Google Scholar 

  201. Simons-Morton DG, Obarzanek E. Diet and blood pressure in children and adolescents. Pediatr Nephrol 1997;11:244–249.

    Article  CAS  PubMed  Google Scholar 

  202. Sinaiko AR, Gomez-Marin O, Prineas RJ. Effect of low sodium diet or potassium supplementation on adolescent blood pressure. Hypertension 1993;21:989–994.

    Article  CAS  PubMed  Google Scholar 

  203. Gillum RF, Elmer PJ, Prineas RJ. Changing sodium intake in children. The Minneapolis Children’s Blood Pressure Study. Hypertension 1981;3:698–703.

    Article  CAS  PubMed  Google Scholar 

  204. Howe PR, Rogers PF, Smith RM, Jureidini KF. Effects of short-term modification of dietary sodium intake on plasma catecholamines and blood pressure in prehypertensive children. Clin Exp Pharmacol Physiol 1986;13:305–309.

    Article  CAS  PubMed  Google Scholar 

  205. Trevisan M, Cooper R, Ostrow D, Miller W et al. Dietary sodium, erythrocyte sodium concentration, sodium-stimulated lithium efflux and blood pressure. Clin Sci (Lond) 1981;61 Suppl 7:29s–32s.

    CAS  Google Scholar 

  206. Cooper R, Van Horn L, Liu K, Trevisan M et al. A randomized trial on the effect of decreased dietary sodium intake on blood pressure in adolescents. J Hypertens 1984;2:361–366.

    CAS  PubMed  Google Scholar 

  207. Calabrese EJ, Tuthill RW. The Massachusetts Blood Pressure Study, Part 3. Experimental reduction of sodium in drinking water: effects on blood pressure. Toxicol Ind Health 1985;1:19–34.

    CAS  PubMed  Google Scholar 

  208. Miller JZ, Weinberger MH, Daugherty SA, Fineberg NS et al. Blood pressure response to dietary sodium restriction in healthy normotensive children. Am J Clin Nutr 1988;47:113–119.

    CAS  PubMed  Google Scholar 

  209. Howe PR, Cobiac L, Smith RM. Lack of effect of short-term changes in sodium intake on blood pressure in adolescent schoolchildren. J Hypertens 1991;9:181–186.

    Article  CAS  PubMed  Google Scholar 

  210. He FJ, MacGregor GA. Importance of salt in determining blood pressure in children: meta-analysis of controlled trials. Hypertension 2006;48:861–869.

    Article  CAS  PubMed  Google Scholar 

  211. Hofman A, Hazebroek A, Valkenburg HA. A randomized trial of sodium intake and blood pressure in newborn infants. JAMA 1983;250:370–373.

    Article  CAS  PubMed  Google Scholar 

  212. Grobbee DE, Bak EE. Electrolyte intake and hypertension in children. In Salt and Hypertension. Retting R, Ganten D, Luft F (eds.). Springer, Heidelberg, Germany 1989.

    Google Scholar 

  213. Geleijnse JM, Hofman A, Witteman JC, Hazebroek AA et al. Long-term effects of neonatal sodium restriction on blood pressure. Hypertension 1997;29:913–917.

    Article  CAS  PubMed  Google Scholar 

  214. Cutler JA, Stamler J. Introduction and summary of the dietary and nutritional methods and findings in the Multiple Risk Factor Intervention Trial. Am J Clin Nutr 1997;65:184S–190S.

    CAS  PubMed  Google Scholar 

  215. Pennington JA, Schoen SA. Contributions of food groups to estimated intakes of nutritional elements: results from the FDA total diet studies, 1982–1991. Int J Vitam Nutr Res 1996;66:342–349.

    CAS  PubMed  Google Scholar 

  216. Whelton PK, He J, Cutler JA, Brancati FL et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA 1997;277:1624–1632.

    Article  CAS  PubMed  Google Scholar 

  217. Geleijnse JM, Kok FJ, Grobbee DE. Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens 2003;17:471–480.

    Article  CAS  PubMed  Google Scholar 

  218. Geleijnse JM, Grobbee DE, Hofman A. Sodium and potassium intake and blood pressure change in childhood. BMJ 1990;300:899–902.

    Article  CAS  PubMed  Google Scholar 

  219. Watson RL, Langford HG, Abernethy J, Barnes TY et al. Urinary electrolytes, body weight, and blood pressure. Pooled cross-sectional results among four groups of adolescent females. Hypertension 1980;2:93–98.

    Article  CAS  PubMed  Google Scholar 

  220. Connor SL, Connor WE, Henry H, Sexton G et al. The effects of familial relationships, age, body weight, and diet on blood pressure and the 24 hour urinary excretion of sodium, potassium, and creatinine in men, women, and children of randomly selected families. Circulation 1984;70:76–85.

    Article  CAS  PubMed  Google Scholar 

  221. Cooper R, Soltero I, Liu K, Berkson D et al. The association between urinary sodium excretion and blood pressure in children. Circulation 1980;62:97–104.

    Article  CAS  PubMed  Google Scholar 

  222. Miller JZ, Weinberger MH, Christian JC. Blood pressure response to potassium supplementation in normotensive adults and children. Hypertension 1987;10:437–442.

    Article  CAS  PubMed  Google Scholar 

  223. Papandreou D, Stamou M, Malindretos P, Rousso I et al. Prevalence of hypertension and association of dietary mineral intake with blood pressure in healthy schoolchildren from northern Greece aged 7–15 years. Ann Nutr Metab 2007;51:471–476.

    Article  CAS  PubMed  Google Scholar 

  224. Liebman M, Chopin LF, Carter E, Clark AJ et al. Factors related to blood pressure in a biracial adolescent female population. Hypertension 1986;8:843–850.

    Article  CAS  PubMed  Google Scholar 

  225. Gillman MW, Oliveria SA, Moore LL, Ellison RC. Inverse association of dietary calcium with systolic blood pressure in young children. JAMA 1992;267:2340–2343.

    Article  CAS  PubMed  Google Scholar 

  226. Jenner DA, English DR, Vandongen R, Beilin LJ et al. Diet and blood pressure in 9-year-old Australian children. Am J Clin Nutr 1988;47:1052–1059.

    CAS  PubMed  Google Scholar 

  227. Wu Y, Cai R, Zhou B, Xu X. Effects of genetic factors and dietary electrolytes on blood pressure of rural secondary school students in Hanzhong. Chin Med Sci J 1991;6:148–152.

    CAS  PubMed  Google Scholar 

  228. Gillman MW, Hood MY, Moore LL, Nguyen US et al. Effect of calcium supplementation on blood pressure in children. J Pediatr 1995;127:186–192.

    Article  CAS  PubMed  Google Scholar 

  229. Grobbee DE, Hofman A. Effect of calcium supplementation on diastolic blood pressure in young people with mild hypertension. Lancet 1986;2:703–707.

    Article  CAS  PubMed  Google Scholar 

  230. Mu JJ, Liu ZQ, Liu WM, Liang YM et al. Reduction of blood pressure with calcium and potassium supplementation in children with salt sensitivity: a 2-year double-blinded placebo-controlled trial. J Hum Hypertens 2005;19:479–483.

    Article  CAS  PubMed  Google Scholar 

  231. Lasaridis AN, Kaisis CN, Zananiri KI, Syrganis CD et al. Increased natriuretic ability and hypotensive effect during short-term high calcium intake in essential hypertension. Nephron 1989;51:517–523.

    Article  CAS  PubMed  Google Scholar 

  232. Lawlor DA, Najman JM, Sterne J, Williams GM et al. Associations of parental, birth, and early life characteristics with systolic blood pressure at 5 years of age: findings from the Mater-University study of pregnancy and its outcomes. Circulation 2004;110:2417–2423.

    Article  PubMed  Google Scholar 

  233. Martin RM, Ness AR, Gunnell D, Emmett P et al. Does breast-feeding in infancy lower blood pressure in childhood? The Avon Longitudinal Study of Parents and Children (ALSPAC). Circulation 2004;109:1259–1266.

    Article  PubMed  Google Scholar 

  234. Martin RM, Gunnell D, Smith GD. Breastfeeding in infancy and blood pressure in later life: systematic review and meta-analysis. Am J Epidemiol 2005;161:15–26.

    Article  PubMed  Google Scholar 

  235. Kolacek S, Kapetanovic T, Luzar V. Early determinants of cardiovascular risk factors in adults. B. Blood pressure. Acta Paediatr 1993;82:377–382.

    Article  CAS  PubMed  Google Scholar 

  236. Ravelli AC, van der Meulen JH, Osmond C, Barker DJ et al. Infant feeding and adult glucose tolerance, lipid profile, blood pressure, and obesity. Arch Dis Child 2000;82:248–252.

    Article  CAS  PubMed  Google Scholar 

  237. Leeson CP, Kattenhorn M, Deanfield JE, Lucas A. Duration of breast feeding and arterial distensibility in early adult life: population based study. BMJ 2001;322:643–647.

    Article  CAS  PubMed  Google Scholar 

  238. Forsyth JS, Willatts P, Agostoni C, Bissenden J et al. Long chain polyunsaturated fatty acid supplementation in infant formula and blood pressure in later childhood: follow up of a randomised controlled trial. BMJ 2003;326:953.

    Article  CAS  PubMed  Google Scholar 

  239. Galobardes B, Lynch JW, Davey Smith G. Childhood socioeconomic circumstances and cause-specific mortality in adulthood: systematic review and interpretation. Epidemiol Rev 2004;26:7–21.

    Article  PubMed  Google Scholar 

  240. Blane D, Hart CL, Smith GD, Gillis CR et al. Association of cardiovascular disease risk factors with socioeconomic position during childhood and during adulthood. BMJ 1996;313:1434–1438.

    Article  CAS  PubMed  Google Scholar 

  241. Wannamethee SG, Whincup PH, Shaper G, Walker M. Influence of fathers’ social class on cardiovascular disease in middle-aged men. Lancet 1996;348:1259–1263.

    Article  CAS  PubMed  Google Scholar 

  242. Colhoun HM, Hemingway H, Poulter NR. Socio-economic status and blood pressure: an overview analysis. J Hum Hypertens 1998;12:91–110.

    Article  CAS  PubMed  Google Scholar 

  243. Kivimaki M, Smith GD, Elovainio M, Pulkki L et al. Socioeconomic circumstances in childhood and blood pressure in adulthood: the cardiovascular risk in young Finns study. Ann Epidemiol 2006;16:737–742.

    Article  PubMed  Google Scholar 

  244. James SA, Van Hoewyk J, Belli RF, Strogatz DS et al. Life-course socioeconomic position and hypertension in African American men: the Pitt County Study. Am J Public Health 2006;96:812–817.

    Article  PubMed  Google Scholar 

  245. Hardy R, Kuh D, Langenberg C, Wadsworth ME. Birthweight, childhood social class, and change in adult blood pressure in the 1946 British birth cohort. Lancet 2003;362:1178–1183.

    Article  PubMed  Google Scholar 

  246. Kittleson MM, Meoni LA, Wang NY, Chu AY et al. Association of childhood socioeconomic status with subsequent coronary heart disease in physicians. Arch Intern Med 2006;166:2356–2361.

    Article  PubMed  Google Scholar 

  247. Regidor E, Banegas JR, Gutierrez-Fisac JL, Dominguez V et al. Influence of childhood socioeconomic circumstances, height, and obesity on pulse pressure and systolic and diastolic blood pressure in older people. J Hum Hypertens 2006;20:73–82.

    Article  CAS  PubMed  Google Scholar 

  248. Brunner E, Shipley MJ, Blane D, Smith GD et al. When does cardiovascular risk start? Past and present socioeconomic circumstances and risk factors in adulthood. Journal of Epidemiology and Community Health 1999;53:757–764.

    Article  CAS  PubMed  Google Scholar 

  249. Batty GD, Leon DA. Socio-economic position and coronary heart disease risk factors in children and young people. Evidence from UK epidemiological studies. Eur J Public Health 2002;12:263–272.

    Article  PubMed  Google Scholar 

  250. Young T, Peppard P, Palta M, Hla KM et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med 1997;157:1746–1752.

    Article  CAS  PubMed  Google Scholar 

  251. Quan SF, Gersh BJ. Cardiovascular consequences of sleep-disordered breathing: past, present and future: report of a workshop from the National Center on Sleep Disorders Research and the National Heart, Lung, and Blood Institute. Circulation 2004;109:951–957.

    Article  PubMed  Google Scholar 

  252. Marcus CL, Greene MG, Carroll JL. Blood pressure in children with obstructive sleep apnea. Am J Respir Crit Care Med 1998;157:1098–1103.

    CAS  PubMed  Google Scholar 

  253. Enright PL, Goodwin JL Sherrill DL, Quan J et al. Blood pressure elevation associated with sleep-related breathing disorder in a community sample of white and Hispanic children: the Tucson Children’s Assessment of Sleep Apnea study. Arch Pediatr Adolesc Med 2003;157:901–904.

    Article  PubMed  Google Scholar 

  254. Kohyama J, Ohinata JS, Hasegawa T. Blood pressure in sleep disordered breathing. Arch Dis Child 2003;88:139–142.

    Article  CAS  PubMed  Google Scholar 

  255. Leung LC, Ng DK, Lau MW, Chan CH et al. Twenty-four-hour ambulatory BP in snoring children with obstructive sleep apnea syndrome. Chest 2006;130:1009–1017.

    Article  PubMed  Google Scholar 

  256. Amin RS, Carroll JL, Jeffries JL, Grone C et al. Twenty-four-hour ambulatory blood pressure in children with sleep-disordered breathing. Am J Respir Crit Care Med 2004;169:950–956.

    Article  PubMed  Google Scholar 

  257. Ng DK, Chan CH, Kwok KL, Leung LC et al. Childhood obstructive sleep apnoea: hypertension was not mentioned. BMJ 2005;331:405; author reply 406.

    Article  PubMed  Google Scholar 

  258. Li AM, Au CT, Sung RY, Ho C et al. Ambulatory Blood Pressure in Children with Obstructive Sleep Apnoea – A Community Based Study. Thorax 2008.

    Google Scholar 

  259. Amin R, Somers VK, McConnell K, Willging P et al. Activity-adjusted 24-hour ambulatory blood pressure and cardiac remodeling in children with sleep disordered breathing. Hypertension 2008;51:84–91.

    Article  CAS  PubMed  Google Scholar 

  260. Ng DK, Chan C, Chow AS, Chow P et al. Childhood sleep-disordered breathing and its implications for cardiac and vascular diseases. J Paediatr Child Health 2005;41:640–646.

    Article  CAS  PubMed  Google Scholar 

  261. Zintzaras E, Kaditis AG. Sleep-disordered breathing and blood pressure in children: a meta-analysis. Arch Pediatr Adolesc Med 2007;161:172–178.

    Article  PubMed  Google Scholar 

  262. Goldstein HS, Manowitz P. Relation between serum uric acid and blood pressure in adolescents. Ann Hum Biol 1993;20:423–431.

    Article  CAS  PubMed  Google Scholar 

  263. Johnson RJ, Feig DI, Herrera-Acosta J, Kang DH. Resurrection of uric acid as a causal risk factor in essential hypertension. Hypertension 2005;45:18–20.

    Article  CAS  PubMed  Google Scholar 

  264. Alper AB, Jr., Chen W, Yau L, Srinivasan SR et al. Childhood uric acid predicts adult blood pressure: the Bogalusa Heart Study. Hypertension 2005;45:34–38.

    CAS  PubMed  Google Scholar 

  265. Feig DI, Nakagawa T, Karumanchi SA, Oliver WJ et al. Hypothesis: Uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney Int 2004;66:281–287.

    Article  CAS  PubMed  Google Scholar 

  266. Franco MC, Christofalo DM, Sawaya AL, Ajzen SA et al. Effects of low birth weight in 8- to 13-year-old children: implications in endothelial function and uric acid levels. Hypertension 2006;48:45–50.

    Article  CAS  PubMed  Google Scholar 

  267. Malinow MR, Levenson J, Giral P, Nieto FJ et al. Role of blood pressure, uric acid, and hemorheological parameters on plasma homocyst(e)ine concentration. Atherosclerosis 1995;114:175–183.

    Article  CAS  PubMed  Google Scholar 

  268. Greenlund KJ, Srinivasan SR, Xu JH, Dalferes E, Jr. et al. Plasma homocysteine distribution and its association with parental history of coronary artery disease in black and white children: the Bogalusa Heart Study. Circulation 1999;99:2144–2149.

    Article  CAS  PubMed  Google Scholar 

  269. Zhu W, Huang X, Li M, Neubauer H. Elevated plasma homocysteine in obese schoolchildren with early atherosclerosis. Eur J Pediatr 2006;165:326–331.

    Article  CAS  PubMed  Google Scholar 

  270. Glowinska B, Urban M, Koput A, Galar M. New atherosclerosis risk factors in obese, hypertensive and diabetic children and adolescents. Atherosclerosis 2003;167:275–286.

    Article  CAS  PubMed  Google Scholar 

  271. Papandreou D, Rousso I, Makedou A, Arvanitidou M et al. Association of blood pressure, obesity and serum homocysteine levels in healthy children. Acta Paediatr 2007;96:1819–1823.

    Article  CAS  PubMed  Google Scholar 

  272. Franco MC, Higa EM, D’Almeida V, de Sousa FG et al. Homocysteine and nitric oxide are related to blood pressure and vascular function in small-for-gestational-age children. Hypertension 2007;50:396–402.

    Article  CAS  PubMed  Google Scholar 

  273. Bao W, Threefoot SA, Srinivasan SR, Berenson GS. Essential hypertension predicted by tracking of elevated blood pressure from childhood to adulthood: the Bogalusa Heart Study. Am J Hypertens 1995;8:657–665.

    Article  CAS  PubMed  Google Scholar 

  274. Klumbiene J, Sileikiene L, Milasauskiene Z, Zaborskis A et al. The relationship of childhood to adult blood pressure: longitudinal study of juvenile hypertension in Lithuania. J Hypertens 2000;18:531–538.

    Article  CAS  PubMed  Google Scholar 

  275. O’Sullivan JJ, Derrick G, Foxall RJ. Tracking of 24-hour and casual blood pressure: a 1-year follow-up study in adolescents. J Hypertens 2000;18:1193–1196.

    Article  PubMed  Google Scholar 

  276. Cook NR, Gillman MW, Rosner BA, Taylor JO et al. Prediction of young adult blood pressure from childhood blood pressure, height, and weight. J Clin Epidemiol 1997;50:571–579.

    Article  CAS  PubMed  Google Scholar 

  277. Lambrechtsen J, Rasmussen F, Hansen HS, Jacobsen IA. Tracking and factors predicting rising in ‘tracking quartile’ in blood pressure from childhood to adulthood: Odense Schoolchild Study. J Hum Hypertens 1999;13:385–391.

    Article  CAS  PubMed  Google Scholar 

  278. Sun SS, Grave GD, Siervogel RM, Pickoff AA et al. Systolic blood pressure in childhood predicts hypertension and metabolic syndrome later in life. Pediatrics 2007;119:237–246.

    Article  PubMed  Google Scholar 

  279. de Swiet M, Fayers P, Shinebourne EA. Value of repeated blood pressure measurements in children – the Brompton study. Br Med J 1980;280:1567–1569.

    Article  CAS  PubMed  Google Scholar 

  280. Rosner B, Hennekens CH, Kass EH, Miall WE. Age-specific correlation analysis of longitudinal blood pressure data. Am J Epidemiol 1977;106:306–313.

    CAS  PubMed  Google Scholar 

  281. Shear CL, Burke GL, Freedman DS, Berenson GS. Value of childhood blood pressure measurements and family history in predicting future blood pressure status: results from 8 years of follow-up in the Bogalusa Heart Study. Pediatrics 1986;77:862–869.

    CAS  PubMed  Google Scholar 

  282. Burke V, Beilin LJ, Dunbar D. Tracking of blood pressure in Australian children. J Hypertens 2001;19:1185–1192.

    Article  CAS  PubMed  Google Scholar 

  283. Hansen HS, Nielsen JR, Hyldebrandt N, Froberg K. Blood pressure and cardiac structure in children with a parental history of hypertension: the Odense Schoolchild Study. J Hypertens 1992;10:677–682.

    CAS  PubMed  Google Scholar 

  284. Newman WP, 3rd, Freedman DS, Voors AW, Gard PD et al. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study. N Engl J Med 1986;314:138–144.

    Article  PubMed  Google Scholar 

  285. Berenson GS, Srinivasan SR, Bao W, Newman WP, 3rd. et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa Heart Study. N Engl J Med 1998;338:1650–1656.

    Article  CAS  PubMed  Google Scholar 

  286. Mahoney LT, Burns TL, Stanford W, Thompson BH et al. Coronary risk factors measured in childhood and young adult life are associated with coronary artery calcification in young adults: the Muscatine Study. J Am Coll Cardiol 1996;27:277–284.

    Article  CAS  PubMed  Google Scholar 

  287. Strong JP, Malcom GT, McMahan CA, Tracy RE et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 1999;281:727–735.

    Article  CAS  PubMed  Google Scholar 

  288. McGill HC, Jr., McMahan CA, Zieske AW, Malcom GT et al. Effects of nonlipid risk factors on atherosclerosis in youth with a favorable lipoprotein profile. Circulation 2001;103:1546–1550.

    Article  CAS  PubMed  Google Scholar 

  289. Sorof JM, Alexandrov AV, Garami Z, Turner JL et al. Carotid ultrasonography for detection of vascular abnormalities in hypertensive children. Pediatr Nephrol 2003;18:1020–1024.

    Article  PubMed  Google Scholar 

  290. Lurbe E, Sorof JM, Daniels SR. Clinical and research aspects of ambulatory blood pressure monitoring in children. J Pediatr 2004;144:7–16.

    Article  PubMed  Google Scholar 

  291. Mitsnefes MM, Khoury PR, McEnery PT. Early posttransplantation hypertension and poor long-term renal allograft survival in pediatric patients. J Pediatr 2003;143:98–103.

    Article  PubMed  Google Scholar 

  292. Sorof JM, Cardwell G, Franco K, Portman RJ. Ambulatory blood pressure and left ventricular mass index in hypertensive children. Hypertension 2002;39:903–908.

    Article  CAS  PubMed  Google Scholar 

  293. Elliott HL. 24-hour blood pressure control: its relevance to cardiovascular outcomes and the importance of long-acting antihypertensive drugs. J Hum Hypertens 2004;18:539–543.

    Article  CAS  PubMed  Google Scholar 

  294. Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW et al. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med 2003;348:2407–2415.

    Article  PubMed  Google Scholar 

  295. Staessen JA, Asmar R, De Buyzere M, Imai Y et al. Task Force II: blood pressure measurement and cardiovascular outcome. Blood Press Monit 2001;6:355–370.

    Article  CAS  PubMed  Google Scholar 

  296. Cooper RS, Kaufman JS. Race and hypertension: science and nescience. Hypertension 1998;32:813–816.

    Article  CAS  PubMed  Google Scholar 

  297. Hanevold CD, Pollock JS, Harshfield GA. Racial differences in microalbumin excretion in healthy adolescents. Hypertension 2008;51:334–338.

    Article  CAS  PubMed  Google Scholar 

  298. Wang X, Poole JC, Treiber FA, Harshfield GA et al. Ethnic and gender differences in ambulatory blood pressure trajectories: results from a 15-year longitudinal study in youth and young adults. Circulation 2006;114:2780–2787.

    Article  PubMed  Google Scholar 

  299. Hanevold C, Waller J, Daniels S, Portman R et al. The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics 2004;113:328–333.

    Article  PubMed  Google Scholar 

  300. Sesso HD, Stampfer MJ, Rosner B, Hennekens CH et al. Systolic and diastolic blood pressure, pulse pressure, and mean arterial pressure as predictors of cardiovascular disease risk in Men. Hypertension 2000;36:801–807.

    Article  CAS  PubMed  Google Scholar 

  301. Belsha CW, Wells TG, McNiece KL, Seib PM et al. Influence of diurnal blood pressure variations on target organ abnormalities in adolescents with mild essential hypertension. Am J Hypertens 1998;11:410–417.

    Article  CAS  PubMed  Google Scholar 

  302. Daniels SR, Loggie JM, Khoury P, Kimball TR. Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation 1998;97:1907–1911.

    Article  CAS  PubMed  Google Scholar 

  303. Daniels SR, Witt SA, Glascock B, Khoury PR et al. Left atrial size in children with hypertension: the influence of obesity, blood pressure, and left ventricular mass. J Pediatr 2002;141:186–190.

    Article  PubMed  Google Scholar 

  304. Sorof JM, Alexandrov AV, Cardwell G, Portman RJ. Carotid artery intimal-medial thickness and left ventricular hypertrophy in children with elevated blood pressure. Pediatrics 2003;111:61–66.

    Article  PubMed  Google Scholar 

  305. Litwin M, Niemirska A, Sladowska J, Antoniewicz J et al. Left ventricular hypertrophy and arterial wall thickening in children with essential hypertension. Pediatr Nephrol 2006;21:811–819.

    Article  PubMed  Google Scholar 

  306. Richey PA, Disessa TG, Hastings MC, Somes GW et al. Ambulatory blood pressure and increased left ventricular mass in children at risk for hypertension. J Pediatr 2008;152:343–348.

    Article  PubMed  Google Scholar 

  307. Stabouli S, Kotsis V, Zakopoulos N. Ambulatory blood pressure monitoring and target organ damage in pediatrics. J Hypertens 2007;25:1979–1986.

    Article  CAS  PubMed  Google Scholar 

  308. Brady TM, Fivush B, Flynn JT, Parekh R. Ability of blood pressure to predict left ventricular hypertrophy in children with primary hypertension. J Pediatr 2008;152:73–78, 78 e71.

    Article  PubMed  Google Scholar 

  309. O’Leary DH, Polak JF, Kronmal RA, Manolio TA et al. Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 1999;340:14–22.

    Article  PubMed  Google Scholar 

  310. Lande MB, Carson NL, Roy J, Meagher CC. Effects of childhood primary hypertension on carotid intima media thickness: a matched controlled study. Hypertension 2006;48:40–44.

    Article  CAS  PubMed  Google Scholar 

  311. Wong TY, Mitchell P. The eye in hypertension. Lancet 2007;369:425–435.

    Article  PubMed  Google Scholar 

  312. Skalina ME, Annable WL, Kliegman RM, Fanaroff AA. Hypertensive retinopathy in the newborn infant. J Pediatr 1983;103:781–786.

    Article  CAS  PubMed  Google Scholar 

  313. Daniels SR, Lipman MJ, Burke MJ, Loggie JM. The prevalence of retinal vascular abnormalities in children and adolescents with essential hypertension. Am J Ophthalmol 1991;111:205–208.

    CAS  PubMed  Google Scholar 

  314. Mitchell P, Cheung N, de Haseth K, Taylor B et al. Blood pressure and retinal arteriolar narrowing in children. Hypertension 2007;49:1156–1162.

    Article  CAS  PubMed  Google Scholar 

  315. Guntsche Z, Saravi FD, Reynals EA, Rauek B et al. Parental hypertension and 24 h-blood pressure in children prior to diabetic nephropathy. Pediatr Nephrol 2002;17:157–164.

    Article  PubMed  Google Scholar 

  316. Theochari MA, Vyssoulis GP, Toutouzas PK, Bartsocas CS. Arterial blood pressure changes in children and adolescents with insulin-dependent diabetes mellitus. J Pediatr 1996;129:667–670.

    Article  CAS  PubMed  Google Scholar 

  317. Dost A, Klinkert C, Kapellen T, Lemmer A et al. Arterial hypertension determined by ambulatory blood pressure profiles: contribution to microalbuminuria risk in a multicenter investigation in 2,105 children and adolescents with type 1 diabetes. Diabetes Care 2008;31:720–725.

    Article  PubMed  Google Scholar 

  318. Ettinger LM, Freeman K, DiMartino-Nardi JR, Flynn JT. Microalbuminuria and abnormal ambulatory blood pressure in adolescents with type 2 diabetes mellitus. J Pediatr 2005;147:67–73.

    Article  CAS  PubMed  Google Scholar 

  319. Darcan S, Goksen D, Mir S, Serdaroglu E et al. Alterations of blood pressure in type 1 diabetic children and adolescents. Pediatr Nephrol 2006;21:672–676.

    Article  PubMed  Google Scholar 

  320. Lurbe E, Redon J, Kesani A, Pascual JM et al. Increase in nocturnal blood pressure and progression to microalbuminuria in type 1 diabetes. N Engl J Med 2002;347:797–805.

    Article  CAS  PubMed  Google Scholar 

  321. Assadi F. Relation of Left Ventricular Hypertrophy to Microalbuminuria and C-Reactive Protein in Children and Adolescents with Essential Hypertension. Pediatr Cardiol 2007.

    Google Scholar 

  322. Nguyen S, McCulloch C, Brakeman P, Portale A et al. Being overweight modifies the association between cardiovascular risk factors and microalbuminuria in adolescents. Pediatrics 2008;121:37–45.

    Article  PubMed  Google Scholar 

  323. Harshfield GA, Pulliam DA, Alpert BS. Ambulatory blood pressure and renal function in healthy children and adolescents. Am J Hypertens 1994;7:282–285.

    Article  CAS  PubMed  Google Scholar 

  324. Mitsnefes M, Ho PL, McEnery PT. Hypertension and progression of chronic renal insufficiency in children: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). J Am Soc Nephrol 2003;14:2618–2622.

    Article  PubMed  Google Scholar 

  325. Patzer L, Seeman T, Luck C, Wuhl E et al. Day- and night-time blood pressure elevation in children with higher grades of renal scarring. J Pediatr 2003;142:117–122.

    Article  PubMed  Google Scholar 

  326. Lama G, Tedesco MA, Graziano L, Calabrese E et al. Reflux nephropathy and hypertension: correlation with the progression of renal damage. Pediatr Nephrol 2003;18:241–245.

    PubMed  Google Scholar 

  327. Lingens N, Dobos E, Witte K, Busch C et al. Twenty-four-hour ambulatory blood pressure profiles in pediatric patients after renal transplantation. Pediatr Nephrol 1997;11:23–26.

    Article  CAS  PubMed  Google Scholar 

  328. Soergel M. Is ABPM clinically useful after pediatric solid organ transplantation? Pediatr Transplant 2004;8:433–436.

    Article  PubMed  Google Scholar 

  329. Mitsnefes MM, Kimball TR, Daniels SR. Office and ambulatory blood pressure elevation in children with chronic renal failure. Pediatr Nephrol 2003;18:145–149.

    PubMed  Google Scholar 

  330. Silverstein DM, Leblanc P, Hempe JM, Ramcharan T et al. Tracking of blood pressure and its impact on graft function in pediatric renal transplant patients. Pediatr Transplant 2007;11:860–867.

    Article  PubMed  Google Scholar 

  331. Opelz G, Wujciak T, Ritz E. Association of chronic kidney graft failure with recipient blood pressure. Collaborative Transplant Study. Kidney Int 1998;53:217–222.

    Article  CAS  PubMed  Google Scholar 

  332. Mange KC, Cizman B, Joffe M, Feldman HI. Arterial hypertension and renal allograft survival. JAMA 2000;283:633–638.

    Article  CAS  PubMed  Google Scholar 

  333. Sorof JM, Sullivan EK, Tejani A, Portman RJ. Antihypertensive medication and renal allograft failure: a North American Pediatric Renal Transplant Cooperative Study report. J Am Soc Nephrol 1999;10:1324–1330.

    CAS  PubMed  Google Scholar 

  334. Mitsnefes MM, Omoloja A, McEnery PT. Short-term pediatric renal transplant survival: blood pressure and allograft function. Pediatr Transplant 2001;5:160–165.

    Article  CAS  PubMed  Google Scholar 

  335. Soergel M, Maisin A, Azancot-Benisty A, Loirat C. Ambulatory blood pressure measurement in children and adolescents with kidney transplants. Z Kardiol 1992;81 Suppl 2:67–70.

    PubMed  Google Scholar 

  336. Matteucci MC, Giordano U, Calzolari A, Turchetta A et al. Left ventricular hypertrophy, treadmill tests, and 24-hour blood pressure in pediatric transplant patients. Kidney Int 1999;56:1566–1570.

    Article  CAS  PubMed  Google Scholar 

  337. Screening for high blood pressure: recommendations and rationale. Am J Prev Med 2003;25:159–164.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Awazu, M. (2009). Epidemiology of Hypertension. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics