Skip to main content

Sickle Cell Nephropathy

  • Reference work entry
Book cover Pediatric Nephrology

Abstract

The major clinical consequences of sickle cell disease (SCD) are vascular obstruction by sickled cells and anemia because of red blood cell (RBC) destruction. The sickling process may cause hematuria, renal papillary necrosis (RPN) and a urinary concentrating defect. There also is a chronic sickle cell glomerulopathy, which is less directly related to sickling, as well as unusual susceptibility to infections and to a specific form of malignancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weatherall DF, Cleg SB, Higs DR, Wood WG. The hemoglobinopathies. In The Metabolic Basis of Inherited Disease. Scriver CR, Beaudet AL, Sly WS, Valle D (eds.). New York, McGraw-Hill, 1992, pp. 2293–2335.

    Google Scholar 

  2. Brugnara C. Sickle cell disease: from membrane pathophysiology to novel therapies for prevention of erythrocyte dehydration. J Pediatr Hematol Oncol 2003;25:927–933.

    PubMed  Google Scholar 

  3. Scheinman JI. Tools to detect and modify sickle cell nephropathy. Kidney Int 2006;69:1927–1930.

    PubMed  CAS  Google Scholar 

  4. Oksenhendler E, Bourbigot B, Desbazeille F, Droz D, Choquenet C, Girot R et al. Recurrent hematuria in 4 white patients with sickle cell trait. J Urol 1984;132:1201–1203.

    PubMed  CAS  Google Scholar 

  5. Osegbe DN. Haematuria and sickle cell disease. A report of 12 cases and review of the literature. Trop Geogr Med 1990;42:22–27.

    PubMed  CAS  Google Scholar 

  6. van Eps S, De Jong PE. Sickle cell disease. In Diseases of the Kidney. Schrier RW, Gottschalk CW (eds.). Boston/Toronto, Little, Brown and Co., 1988, pp. 2561–2681.

    Google Scholar 

  7. Davies SC, Hewitt PE. Sickle cell disease. Br J Hosp Med 1984;31:440–444.

    PubMed  CAS  Google Scholar 

  8. Odita JC, Ugbodaga CI, Okafor LA, Ojogwu LI, Ogisi OA. Urographic changes in homozygous sickle cell disease. Diagn Imaging 1983;52:259–263.

    PubMed  CAS  Google Scholar 

  9. Pandya KK, Koshy M, Brown N, Presman D. Renal papillary necrosis in sickle cell hemoglobinopathies. J Urol 1976;115:497–501.

    PubMed  CAS  Google Scholar 

  10. Chauhan PM, Kondlapoodi P, Natta CL. Pathology of sickle cell disorders. Pathol Annu 1983;18:253–276.

    PubMed  Google Scholar 

  11. Rivera A. Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists. Am J Physiol Cell Physiol 2007;293:C960–C966.

    PubMed  CAS  Google Scholar 

  12. de Jong PE, Statius van Eps LW. Sickle cell nephropathy: new insights into its pathophysiology. Kid Int 1985;27:711–717.

    CAS  Google Scholar 

  13. Burry A, Cross R, Axelsen R. Analgesic nephropathy and the renal concentrating mechanism. Pathol Annu 1977;12:1–31.

    PubMed  Google Scholar 

  14. Kiryluk K, Jadoon A, Gupta M, Radhakrishnan J. Sickle cell trait and gross hematuria. Kidney Int 2007;71:706–710.

    PubMed  CAS  Google Scholar 

  15. Avery RA, Harris JE, Davis CJ, Borgaonkar DS, Byrd JC, Weiss RB. Renal medullary carcinoma: clinical and therapeutic aspects of a newly described tumor. Cancer 1996;78:128–132.

    PubMed  CAS  Google Scholar 

  16. Schultz PK, Strife JL, Strife CF, McDaniel JD. Hyperechoic renal medullary pyramids in infants and children. Radiology 1991;181:163–167.

    Google Scholar 

  17. Walker TM, Serjeant GR. Increased renal reflectivity in sickle cell disease: prevalence and characteristics. Clin Radiol 1995;50:566–569.

    PubMed  CAS  Google Scholar 

  18. McCall IW, Moule N, Desai P, Serjeant GR. Urographic findings in homozygous sickle cell disease. Radiology 1978;126:99–104.

    PubMed  CAS  Google Scholar 

  19. Mapp E, Karasick S, Pollack H, Wechsler RJ, Karasick D. Uroradiological manifestations of S-hemoglobinopathy. Semin Roentgenol 1987;22:186–194.

    PubMed  CAS  Google Scholar 

  20. Eknoyan G, Qunibi WY, Grissom RT, Tuma SN, Ayus JC. Renal papillary necrosis: an update. Medicine 1982;61:55–73.

    PubMed  CAS  Google Scholar 

  21. Sabatini S. Pathophysiologic mechanisms of abnormal collecting duct function. Semin Nephrol 1989;9:179–202.

    PubMed  CAS  Google Scholar 

  22. Keeler R, Wilson N. Natriuretic response to hypervolemia is absent in rats with papillary necrosis. Am J Physiol 1989;257:R422–R426.

    PubMed  CAS  Google Scholar 

  23. Allon M, Lawson L, Eckman JR, Delaney V, Bourke E. Effects of nonsteroidal antiinflammatory drugs on renal function in sickle cell anemia. Kidney Int 1988;34:500–506.

    PubMed  CAS  Google Scholar 

  24. Beutler E. Erythrocyte disorders: anemias related to abnormal globulin. In Hematology. Williams WJ, Beutler E, Erslev AJ, Lichtman MA (eds.). New York, McGraw-Hill, 1992, pp. 613–626.

    Google Scholar 

  25. Allon M. Renal abnormalities in sickle cell disease. Arch Intern Med 1990;150:501–504.

    PubMed  CAS  Google Scholar 

  26. Buckalew VM, Someren A. Renal manifestations of sickle cell disease. Nephron 1974;133:660–669.

    Google Scholar 

  27. Statius van EPs LW, Schouten H, Porte-Wijsman LW, Struyker Boudier AM. The influence of red blood cell transfusions on the hyposthenuria and renal hemodynamics of sickle cell anemia. Clin Chim Acta 1967;17:449–461.

    Google Scholar 

  28. De Jong PE, de Jong-van BL, Schouten H, Donker AJ, Statius van EL. The influence of indomethacin on renal acidification in normal subjects and in patients with sickle cell anemia. Clin Nephrol 1983;19:259–264.

    PubMed  CAS  Google Scholar 

  29. Kurtzman NA. Acquired distal renal tubular acidosis [clinical conference]. Kidney Int 1983;24:807–819.

    PubMed  CAS  Google Scholar 

  30. Bakir AA, Hathiwala SC, Ainis H, Hryhorczuk DO, Rhee HL, Levy PS et al. Prognosis of the nephrotic syndrome in sickle glomerulopathy. A retrospective study. Am J Nephrol 1987;7:110–115.

    CAS  Google Scholar 

  31. DeFronzo RA, Taufield PA, Black H, McPhedran P, Cooke CR. Impaired renal tubular potassium secretion in sickle cell disease. Ann Intern Med 1979;90:310–316.

    PubMed  CAS  Google Scholar 

  32. Morgan AG, de Ceulaer K, Serjeant GR. Glomerular function and hyperuricaemia in sickle cell disease. J Clin Pathol 1984;37:1046–1049.

    PubMed  CAS  Google Scholar 

  33. De Jong PE, de Jong-van BL, Donker AJ, Statius van EL. The role of prostaglandins and renin in sickle-cell nephropathy. A hypothesis. Neth J Med 1978;21:67–72.

    CAS  Google Scholar 

  34. Berman LB, Tublin I. The nephropathies of sickle-cell disease. Arch Intern Med 1959;103:602–606.

    CAS  Google Scholar 

  35. Sklar AH, Campbell H, Caruana RJ, Lightfoot BO, Gaier JG, Milner P. A population study of renal function in sickle cell anemia. Int J Artif Organs 1990;13:231–236.

    PubMed  CAS  Google Scholar 

  36. Falk RJ, Scheinman JI, Phillips G, Orringer E, Johnson A, Jennette JC. Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme. N Engl J Med 1992;326:910–915.

    PubMed  CAS  Google Scholar 

  37. Guasch A, Cua M, Mitch WE. Early detection and the course of glomerular injury in patients with sickle cell anemia. Kidney Int 1996;49:786–791.

    PubMed  CAS  Google Scholar 

  38. Guasch A, Cua M, You W, Mitch WE. Sickle cell anemia causes a distinct pattern of glomerular dysfunction. Kidney Int 1997;51:826–833.

    PubMed  CAS  Google Scholar 

  39. Lonsdorfer A, Comoe L, Yapo AE, Lonsdorfer J. Proteinuria in sickle cell trait and disease: an electrophoretic. Clin Chim Acta 1989;181:239–248.

    PubMed  CAS  Google Scholar 

  40. Alvarez O, Lopez-Mitnik G, Zilleruelo G. Short-term follow-up of patients with sickle cell disease and albuminuria. Pediatr Blood Cancer 2008;50:1236–1239.

    Google Scholar 

  41. Guasch A, Navarrete J, Nass K, Zayas CF. Glomerular involvement in adults with sickle cell hemoglobinopathies: prevalence and clinical correlates of progressive renal failure. J Am Soc Nephrol 2006;17:2228–2235.

    PubMed  CAS  Google Scholar 

  42. Powars DR, Chan LS, Hiti A, Ramicone E, Johnson C. Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine (Baltimore) 2005;84:363–376.

    Google Scholar 

  43. Zamurovic D, Churg J. Idiopathic and secondary mesangiocapillary glomerulonephritis. Nephron 1984;38:145–153.

    PubMed  CAS  Google Scholar 

  44. Morgan AG, Shah DJ, Williams W. Renal pathology in adults over 40 with sickle-cell disease. Nephron 1987;36:241–250.

    CAS  Google Scholar 

  45. Bhathena DB, Sondheimer JH. The glomerulopathy of homozygous sickle hemoglobin (SS) disease: morphology and pathogenesis. J Am Soc Nephrol 1991;1:1241–1252.

    PubMed  CAS  Google Scholar 

  46. De Jong PE, Saleh AW, de Zeeuw D, Donker AJ, van der Hem GK, Pratt JJ et al. Urinary prostaglandins in sickle cell nephropathy: a defect in 9-ketoreductase activity? Clin Nephrol 1984;22:212–213.

    PubMed  CAS  Google Scholar 

  47. Bergmann S, Zheng D, Barredo J, Abboud MR, Jaffa AA. Renal kallikrein: a risk marker for nephropathy in children with sickle cell disease. J Pediatr Hematol Oncol 2006;28:147–153.

    PubMed  CAS  Google Scholar 

  48. Strauss J, Pardo V, Koss MN, Griswold W, McIntosh RM. Nephropathy associated with sickle cell anemia: an autologous immune complex nephritis. I. Studies on nature of glomerular- bound antibody and antigen identification in a patient with sickle cell disease and immune deposit glomerulonephritis. Am J Med 1975;58:382–387.

    PubMed  CAS  Google Scholar 

  49. Jennette JC, Charles L, Grubb W. Glomerulomegaly and focal segmental glomerulosclerosis associated with obesity and sleep-apnea syndrome. Am J Kidney Dis 1987;10:470–472.

    PubMed  CAS  Google Scholar 

  50. Olson JL, Hostetter TH, Rennke HG, Brenner BM, Venkatachalam MA. Altered glomerular permselectivity and progressive sclerosis following extreme ablation of renal mass. Kid Int 1982;22:112–126.

    CAS  Google Scholar 

  51. Cole WG, Chan D, Bateman JF. Two-dimensional assays of peptide fragments. Methods Enzymol 1987;145:187–205.

    Google Scholar 

  52. Spear G. Glomerular alterations in cyanotic congenital heart disease. Nephron 1960;106:347–367.

    CAS  Google Scholar 

  53. Yoshida Y, Fogo A, Ichikawa I. Glomerular hemodynamic changes vs. hypertrophy in experimental glomerular sclerosis. Kid Int 1989;35:654–660.

    CAS  Google Scholar 

  54. Vichinsky E, Onyekwere O, Porter J, Swerdlow P, Eckman J, Lane P et al. A randomised comparison of deferasirox versus deferoxamine for the treatment of transfusional iron overload in sickle cell disease. Br J Haematol 2007;136:501–508.

    PubMed  CAS  Google Scholar 

  55. Lande IM, Glazer GM, Sarnaik S, Aisen A, Rucknagel D, Martel W. Sickle-cell nephropathy: MR imaging. Radiology 1986;158:379–383.

    PubMed  CAS  Google Scholar 

  56. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Nephron 1981;241:F85–F93.

    CAS  Google Scholar 

  57. Woolf AS, Fine LG. Do glomerular hemodynamic adaptations influence the progression of human renal disease? Pediatr Nephrol 1991;5:88–93.

    PubMed  CAS  Google Scholar 

  58. Doi T, Striker LJ, Gibson CC, Agodoa LYC, Brinster RL, Striker GE. Glomerular lesions in mice transgenic for growth hormone and glomerular size and mesangial sclerosis. Am J Pathol 1990;137:541–552.

    PubMed  CAS  Google Scholar 

  59. Haycock GB. Creatinine, body size and renal function. Pediatr Nephrol 1989;3:22–24.

    PubMed  CAS  Google Scholar 

  60. Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976;58:259–263.

    PubMed  CAS  Google Scholar 

  61. Mulhern JG, Perrone RD. Accurate measurement of glomerular filtration rate. Andreucci V, Fine LG, Kjellstrand CM, Sacino-N, Eds. Boston: Klewer 1990; 277–291Int Yearbook of Nephrol 1990.

    Google Scholar 

  62. Excerpts from the United States Renal Data System 1996 Annual Data Report. Am J Kidney Dis 1996;28:S1–165.

    Google Scholar 

  63. Walser M. Progression of chronic renal failure in man. Kidney Int 1990;37:1195–1210.

    PubMed  CAS  Google Scholar 

  64. Coakley DF, Roland CL, Falk RJ, Dukes GE, Kao CF, Hak LJ. Renal function assessment with HPLC analysis of iothalamate (IOTH) and para-aminohippurate (PAH) compared to inulin,PAH, and creatinine as measured by standard analytical methods. Pharmacotherapy 1991;11:265.

    Google Scholar 

  65. Voskaridou E, Terpos E, Michail S, Hantzi E, Anagnostopoulos A, Margeli A et al. Early markers of renal dysfunction in patients with sickle cell/beta-thalassemia. Kidney Int 2006;69:2037–2042.

    PubMed  CAS  Google Scholar 

  66. Perkins BA, Nelson RG, Ostrander BE, Blouch KL, Krolewski AS, Myers BD et al. Detection of renal function decline in patients with diabetes and normal or elevated GFR by serial measurements of serum cystatin C concentration: results of a 4-year follow-up study. J Am Soc Nephrol 2005;16:1404–1412.

    PubMed  Google Scholar 

  67. Alvarez O, Zilleruelo G, Wright D, Montane B, Lopez-Mitnik G. Serum cystatin C levels in children with sickle cell disease. Pediatr Nephrol 2006;21:533–537.

    Google Scholar 

  68. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31–41.

    PubMed  CAS  Google Scholar 

  69. Filler G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 2003;18:981–985.

    PubMed  Google Scholar 

  70. Morozumi K, Thiel G, Gudat F, Mihatsch MJ. Studies on morphological outcome of cyclosporine-associated arteriolopathy after discontinuation of cyclosporine in patients with renal allografts. Transplant Proc 1993;25:537–539.

    PubMed  CAS  Google Scholar 

  71. Raymond NG, Dwyer JT, Nevins P, Kurtin P. An approach to protein restriction in children with renal insufficiency. Nephron 1990;4:145–151.

    CAS  Google Scholar 

  72. Foucan L, Bourhis V, Bangou J, Merault L, Etienne-Julan M, Salmi RL. A randomized trial of captopril for microalbuminuria in normotensive adults with sickle cell anemia. Am J Med 1998;104:339–342.

    PubMed  CAS  Google Scholar 

  73. Heeg JE, DeJong PE, Van Der Hem GK, DeZeeuw D. Reduction of proteinuria by angiotensin converting enzyme inhibition. Kidney Int 1987;32:78–83.

    PubMed  CAS  Google Scholar 

  74. Murthy VS, Haywood J. Survival analysis by sex,age,group and hemotype in sickle cell disease. J Chronic Dis 1981;34:313–319.

    PubMed  CAS  Google Scholar 

  75. Thomas AN, Pattison C, Serjeant GR. Causes of death in sickle-cell disease in Jamaica. Br Med J – Clin Res 1982;285:633–635.

    CAS  Google Scholar 

  76. Powars DR, Meiselman HJ, Fisher TC, Hiti A, Johnson C. Beta-S gene cluster haplotypes modulate hematologic and hemorheologic expression in sickle cell anemia. Use in predicting clinical severity. Am J Pediatr Hematol Oncol 1994;16:55–61.

    PubMed  CAS  Google Scholar 

  77. Guasch A, Zayas CF, Eckman JR, Muralidharan K, Zhang W, Elsas LJ. Evidence that microdeletions in the alpha globin gene protect against the development of sickle cell glomerulopathy in humans. J Am Soc Nephrol 1999;10(5):1014–1019.

    PubMed  CAS  Google Scholar 

  78. Tomson CR, Edmunds ME, Chambers K, Bricknell S, Feehally J, Walls J. Effect of recombinant human erythropoietin on erythropoiesis in homozygous sickle-cell anaemia and renal failure. Nephrol Dial Transplant 1992;7:817–821.

    PubMed  CAS  Google Scholar 

  79. Rodgers GP, Dover GJ, Uyesaka N, Noguchi CT, Schechter AN, Nienhuis AW. Augmentation by erythropoietin of the fetal-hemoglobin response to hydroxyurea in sickle cell disease [see comments]. N Engl J Med 1993;328:73–80.

    PubMed  CAS  Google Scholar 

  80. Ojo AO, Govaerts TC, Schmouder RL, Leichtman AB, Leavey SF, Wolfe RA et al. Renal transplantation in end-stage sickle cell nephropathy. Transplantation 1999;67(2):291–295.

    PubMed  CAS  Google Scholar 

  81. Bleyer AJ, Donaldson LA, McIntosh M, Adams PL. Relationship between underlying renal disease and renal transplantation outcome. Am J Kidney Dis 2001;37(6):1152–1161.

    PubMed  CAS  Google Scholar 

  82. Spector D, Zachary JB, Sterioff S, Millan J. Painful crises following renal transplantation in sickle cell anemia. Am J Med 1978;64:835–839.

    PubMed  CAS  Google Scholar 

  83. Chatterjee SN. National study in natural history of renal allografts in sickle cell disease or trait: a second report. Transplant Proc 1987;19:33–35.

    PubMed  CAS  Google Scholar 

  84. Donnelly PK, Edmunds ME, O’Reilly K. Renal transplantation in sickle cell disease. Lancet 1988;2:229.

    PubMed  CAS  Google Scholar 

  85. Miner DJ, Jorkasky DK, Perloff LJ, Grossman RA, Tomaszewski JE. Recurrent Sickle Cell Nephropathy in a Transplanted Kidney. Am J Kidney Dis 1987;10:306–313.

    PubMed  CAS  Google Scholar 

  86. Mauer SM, Barbosa J, Vernier RL, Kjellstrand CM, Buselmeier TJ, Simmons RL et al. Development of Diabetic Vascular Lesions in Normal Kidneys Transplanted into Patients with Diabetes Mellitus. Nephron 1976;295:916–920.

    CAS  Google Scholar 

  87. Smith-Whitley K, Zhao H, Hodinka RL, Kwiatkowski J, Cecil R, Cecil T et al. Epidemiology of human parvovirus B19 in children with sickle cell disease. Blood 2004;103:422–427.

    PubMed  CAS  Google Scholar 

  88. Cazzola M, Pootrakul P, Huebers HA, Eng M, Eschbach J, Finch CA. Erythroid marrow function in anemic patients. Blood 1987;69:296–301.

    PubMed  CAS  Google Scholar 

  89. Goldberg JS, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: Evidence that the oxygen sensor is a heme protein. Science 1988;242:1412–1415.

    PubMed  CAS  Google Scholar 

  90. Sztajzel J, Ruedin P, Stoermann C, Monin C, Schifferli J, Leski M et al. Effects of dialysate composition during hemodialysis on left ventricular function. Kidney Int Suppl 1993;41:S60–S66.

    PubMed  CAS  Google Scholar 

  91. Platt OS, Thorington BD, Brambilla DJ, Milner PF, Rosse WF, Vichinsky E et al. Pain in sickle cell disease. Rates and risk factors. N Engl J Med 1991;325:11–16.

    PubMed  CAS  Google Scholar 

  92. Ponez M, Kane E, Gill FM. Acute chest syndrome in sickle cell disease: etiology and clinical correlates. J Pediatr 1985;107:861–866.

    Google Scholar 

  93. Powars DR. Sickle cell anemia and major organ failure. Hemoglobin 1990;14:573–598.

    PubMed  CAS  Google Scholar 

  94. Sebastiani P, Ramoni MF, Nolan V, Baldwin CT, Steinberg MH. Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet 2005;37:435–440.

    PubMed  CAS  Google Scholar 

  95. Aslan M, Thornley-Brown D, Freeman BA. Reactive species in sickle cell disease. Ann N Y Acad Sci 2000;899:375–391.

    PubMed  CAS  Google Scholar 

  96. Nath KA, Grande JP, Haggard JJ, Croatt AJ, Katusic ZS, Solovey A et al. Oxidative stress and induction of heme oxygenase-1 in the kidney in sickle cell disease. Am J Pathol 2001;158(3):893–903.

    PubMed  CAS  Google Scholar 

  97. Nath KA, Vercellotti GM, Grande JP, Miyoshi H, Paya CV, Manivel JC et al. Heme protein-induced chronic renal inflammation: suppressive effect of induced heme oxygenase-1. Kidney Int 2001;59(1):106–117.

    PubMed  CAS  Google Scholar 

  98. Bunn HF. Mechanisms of disease – Pathogenesis and treatment of sickle cell disease. N Engl J Med 1997; 337:762–769.

    PubMed  CAS  Google Scholar 

  99. Sklar AH, Perez JC, Harp RJ, Caruana RJ. Acute renal failure in sickle cell anemia. Int J Artif Organs 1990;13:347–351.

    PubMed  CAS  Google Scholar 

  100. Simckes AM, Chen SS, Osorio AV, Garola RE, Woods GM. Ketorolac-induced irreversible renal failure in sickle cell disease: a case report. Pediatr Nephrol 1999;13(1):63–67.

    PubMed  CAS  Google Scholar 

  101. Koppes GM, Daly JJ, Coltman CA Jr., Butkus DE. Exertion-induced rhabdomyolysis with acute renal failure and disseminated intravascular coagulation in sickle cell trait. Am J Med 1977;63:313–317.

    PubMed  CAS  Google Scholar 

  102. Makaryus JN, Catanzaro JN, Katona KC. Exertional rhabdomyolysis and renal failure in patients with sickle cell trait: is it time to change our approach? Hematology 2007;12:349–352.

    PubMed  CAS  Google Scholar 

  103. Johnson CS, Giorgio AJ. Arterial blood pressure in adults with sickle cell disease. Arch Intern Med 1981;141:891–893.

    PubMed  CAS  Google Scholar 

  104. Moeslinger T, Spieckermann PG. Urea-induced inducible nitric oxide synthase inhibition and macrophage proliferation. Kidney Int 2001;59 (Suppl 78):2–8.

    Google Scholar 

  105. Pegelow CH, Colangelo L, Steinberg M, Wright EC, Smith J, Phillips G et al. Natural history of blood pressure in sickle cell disease: Risks for stroke and death associated with relative hypertension in sickle cell anemia. Am J Med 1997;102:171–177.

    PubMed  CAS  Google Scholar 

  106. Sty JR, Babbitt DP, Sheth K. Abnormal Tc-99m-methylene diphosphonate accumulation in the kidneys of children with sickle cell disease. Clin Nucl Med 1980;5:445–447.

    PubMed  CAS  Google Scholar 

  107. Smiley D, Dagogo-Jack S, Umpierrez G. Therapy insight: metabolic and endocrine disorders in sickle cell disease. Nat Clin Pract Endocrinol Metab 2008;4:102–109.

    PubMed  CAS  Google Scholar 

  108. Adams R, McKie V, Nichols F, Carl E, Zhang DL, McKie K et al. The use of transcranial ultrasonography to predict stroke in sickle cell disease [see comments]. N Engl J Med 1992;326:605–610.

    PubMed  CAS  Google Scholar 

  109. Porter JB. Concepts and goals in the management of transfusional iron overload. Am J Hematol 2007;82:1136–1139.

    PubMed  CAS  Google Scholar 

  110. Shannon KM. Recombinant erythropoietin in pediatrics: a clinical perspective. Pediatric Annals 1990;19:197–206.

    PubMed  CAS  Google Scholar 

  111. Baliga BS, Pace BS, Chen HH, Shah AK, Yang YM. Mechanism for fetal hemoglobin induction by hydroxyurea in sickle cell erythroid progenitors. Am J Hematol 2000;65:227–233.

    PubMed  CAS  Google Scholar 

  112. Charache S, Dover GJ, Moyer MA, Moore JW. Hydroxyurea-induced augmentation of fetal hemoglobin production in patients with sickle cell anemia. Blood 1987;69:109–116.

    PubMed  CAS  Google Scholar 

  113. Noguchi CT, Rodgers GP, Serjeant G, Schechter AN. Current concepts: levels of fetal hemoglobin necessary for treatment of sickle cell disease. N Engl J Med 1988;318:96–99.

    PubMed  CAS  Google Scholar 

  114. Charache S, Dover GJ, Moore RD et al. Hydroxyurea: effects on hemoglobin F production in patients with sickle cell anemia. Blood 1992;79:2555–2565.

    PubMed  CAS  Google Scholar 

  115. Ferster A, Tahriri P, Vermylen C, Sturbois G, Corazza F, Fondu P et al. Five years of experience with hydroxyurea in children and young adults with sickle cell disease. Blood 2001;97:3628–3632.

    PubMed  CAS  Google Scholar 

  116. Wang WC, Helms RW, Lynn HS, Redding-Lallinger R, Gee BE, Ohene-Frempong K et al. Effect of hydroxyurea on growth in children with sickle cell anemia: results of the HUG-KIDS Study. J Pediatr 2002;140:225–229.

    PubMed  CAS  Google Scholar 

  117. Iyamu EW, Fasold H, Roa D, del Pilar A, Asakura T, Turner EA. Hydroxyurea-induced oxidative damage of normal and sickle cell hemoglobins in vitro: amelioration by radical scavengers. J Clin Lab Anal 2001;15:1–7.

    PubMed  CAS  Google Scholar 

  118. Afenyi-Annan A, Kail M, Combs MR, Orringer EP, Ashley-Koch A, Telen MJ. Lack of Duffy antigen expression is associated with organ damage in patients with sickle cell disease. Transfusion 2008;48:917–924.

    Google Scholar 

  119. Ataga KI, Smith WR, De Castro LM, Swerdlow P, Saunthararajah Y, Castro O et al. Efficacy and safety of the Gardos channel blocker, Senicapoc (ICA-17043), in patients with sickle cell anemia. Blood 2008;11:3991–3997.

    Google Scholar 

  120. Steinberg MH. Management of sickle cell disease. N Engl J Med 1999;340:1021–1030.

    PubMed  CAS  Google Scholar 

  121. Singh PC, Ballas SK. Drugs for preventing red blood cell dehydration in people with sickle cell disease. Cochrane Database Syst Rev 2007;17(4):CD003426.

    Google Scholar 

  122. Schleuning M, Stoetzer O, Waterhouse C, Schlemmer M, Ledderose G, Kolb HJ. Hematopoietic stem cell transplantation after reduced-intensity conditioning as treatment of sickle cell disease. Exp Hematol 2002;30:7–10.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Scheinman, J.I. (2009). Sickle Cell Nephropathy. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics