Skip to main content

Laboratory Assessment and Investigation of Renal Function

  • Reference work entry
Pediatric Nephrology

Abstract

The kidney can be injured by a variety of different mechanisms. Investigating the type of injury and assessing the degree of injury and its progression involves laboratory assessment and often tissue sampling. This chapter will discuss laboratory assessment and investigation with emphasis on the use of blood and urine samples to investigate renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 369.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual endpoints. Clin Pharmacol Ther 2001;69:89–95.

    Article  Google Scholar 

  2. Cole BR, Giangiacomo J, Ingelfinger JR, Robron AM. Measurement of renal function without urine collection. N Engl J Med 1972;287:1109–1114.

    Article  PubMed  CAS  Google Scholar 

  3. Schwartz GJ, Furth SL. Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol 2007;22:1839–1848.

    Article  PubMed  Google Scholar 

  4. Sapirstein LA, Vidt DG, Mandel MJ, Hanusek G. Volumes of distribution and clearance of intravenously injected creatinine in the dog. Am J Physiol 1955;181:330–336.

    PubMed  CAS  Google Scholar 

  5. Namnum P, Injogna K, Baggish D, et al. Evidence for bidirectional net movement of creatinine in the rat kidney. Am J Physiol 1983;244:F719–F723.

    PubMed  CAS  Google Scholar 

  6. Sjöstrom PA, Odlind BG, Wolgast M. Extensive tubular secretion and reabsorption of creatinine in humans. Scand J Urol Nephrol 1988;22:129–131.

    Article  PubMed  Google Scholar 

  7. Doolan PD, Alpen EL, Theil GB. A clinical appraisal of the plasma concentration and endogenous clearance of creatinine. Am J Med 1962;32:65–79.

    Article  PubMed  CAS  Google Scholar 

  8. Fong, J, Johnston S, Valentino T, Notterman D. Length/serum creatinine ratio does not predict measured creatinine clearance in critically ill children. Clin Pharmacol Ther 1995;58:192–197.

    Article  PubMed  CAS  Google Scholar 

  9. Meyersohn M, Conrad KA, Achari R. The influence of a cooked meat meal on creatinine plasma concentration and creatinine clearance. Br J Clin Pharmacol 1983;15:227–230.

    Article  Google Scholar 

  10. Rossono TG, Ambrose RT, Wu AHB, et al. Candidate references method for determining creatinine in serum: method development and inter-laboratory validation. Clin Chem 1990;36:1951–1955.

    Google Scholar 

  11. Schwartz GH, Haycock GB, Edelmon CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics 1976;58:259–263.

    PubMed  CAS  Google Scholar 

  12. Schwartz GJ, Brian LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, adolescents. Pediatr Clin North Am 1987;34:571–590.

    PubMed  CAS  Google Scholar 

  13. Cockcraft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976;16:31–41.

    Article  Google Scholar 

  14. Finney H, Newman DJ, Thokker H, et al. Reference ranges for plasma cystatin C and creatinine measurements in premature infants, neonates and older children. Arch Dis Child 2000;82:71–75.

    Article  PubMed  CAS  Google Scholar 

  15. Tenstad O, Roald AB, Grubb A, Aukland K. Renal handling of radiolabelled human cystatin C in the rat. Scand J Clin Lab Invest 1996;56:409–414.

    Article  PubMed  CAS  Google Scholar 

  16. Keevil BG, Kilpatrick ES, Nichols SP, Maylor PW. Biological variation of cystatin C: implications for the assessment of glomerular filtration rate. Clin Chem 1998;44:1535–1539.

    PubMed  CAS  Google Scholar 

  17. Laterza OF, Price CP, Scott MG. Cystatin C: an improved estimator of glomerular filtration rate? Clin Chem 2002;48:699–707.

    PubMed  CAS  Google Scholar 

  18. Filler G, Lepage N. Should the Schwartz formula for estimation of GFR be replaced by cystatin C formula? Pediatr Nephrol 2003;18:981–985.

    Article  PubMed  Google Scholar 

  19. Zappitelli M, Parvex P, Joseph L, et al. Derivation and validation of cystatin C based prediction equations for GFR in children. Am J Kidney Dis 2006;48:221–230.

    Article  PubMed  CAS  Google Scholar 

  20. Guignard JP, Santos F. Laboratory investigations. In Pediatric Nephrology, 5th edn. Avner ED, Harmon WE, Niaudet P (eds.). Philadelphia, Lippincott Williams Wilkins, 2004, pp. 349–424.

    Google Scholar 

  21. Rehling M, Moller ML, Thamdrup B, et al. Simultaneous measurement of renal clearances and plasma clearance of 99mTc-labelled diethylene triamine penta-acetate, 51Cr-labelled ethylene diamine tetra-acetate and inulin in man. Clin Sci 1984;66:613–619.

    PubMed  CAS  Google Scholar 

  22. Durand E, Prigent A. The basics of renal imaging and function studies. A J Nucl Med 2002;46:249–267.

    CAS  Google Scholar 

  23. Odlund B, Hällgren R, Sohtell M, Lindström B. Is 125I-iothalamate an ideal marker for glomerular filtration? Kidney Int 1985;27:9–16.

    Article  Google Scholar 

  24. Nilsson-Ehle P, Grubb A. New markers for determination of GFR: Iohexol clearance and cystatin C serum concentration. Kidney Int 1994;46:S17–S19.

    Google Scholar 

  25. Krustzen E, Back SE, Nilsson-Ehle P. Determination of glomerular filtration rate using iohexol clearance and capillary sampling. Scand J Clin Lab Invest 1990;50:279–283.

    Article  Google Scholar 

  26. Gaspari F, Perico N, Ruggenenti P, et al. Plasma clearance of nonradioactive iohexol as a measure of glomerular filtration rate. J Am Soc Nephrol 1995;6:257–263.

    PubMed  CAS  Google Scholar 

  27. Schwartz, GJ, Furth S, Cole S, et al. Glomerular filtration rate via plasma iohexol disappearance: pilot study for chronic kidney disease in children. Kidney Int 2006;69:2070–2077.

    Article  PubMed  CAS  Google Scholar 

  28. Messent JW, Elliott TG, Hill RD, Jarrett RJ, et al. Prognostic significance of microalbuminuria in insulin-dependent diabetes mellitus: a twenty-three year follow-up study. Kidney Int 1992;41:836–839.

    Article  PubMed  CAS  Google Scholar 

  29. Bergeron E, Granados R, Fernandez-Segoviano P, et al. Classification of renal proteinuria: a simple algorithm. Clin Chem Lab Med 2002;40:1143–1150.

    Article  Google Scholar 

  30. Bennett M, Dent CL, Ma Q, et al. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: a prospective study. Clin J Am Soc Nephrol 2008;3:665–673.

    Article  PubMed  Google Scholar 

  31. Houser M. Assessment of proteinuria using random urine samples. J Pediatr 1984;104:845–848.

    Article  PubMed  CAS  Google Scholar 

  32. Fassett RG, Horgan B, Mathew TH. The detection of glomerular bleeding by phase contrast microscopy. Lancet 1982;1:1432–1434.

    Article  PubMed  CAS  Google Scholar 

  33. Friedman AL. Urinalysis: oft obtained, oft ignored. Cont Pediatr 1991;8:31–51.

    Google Scholar 

  34. Huicho L, Campos-Sanchez M, Alano C. Meta-analysis of urine screening tests for determining the risk of urinary tract infection in children. Pediatr Infect Dis J 2002;21:1–7.

    Article  PubMed  Google Scholar 

  35. Linshaw MA, Gruskin AB. The routine urinalysis: to keep or not to keep: that is the question. Pediatrics 1997;100:1031–1032.

    Article  PubMed  CAS  Google Scholar 

  36. Maher FT, Strong CG. Elveback: Renal extraction ratios and plasma binding studies of radio-iodinated o-iodo-hippurate and iodopyracet and p-amino-hippurate in man. Mayo Clin Proc 1974;46:189–192.

    Google Scholar 

  37. Wei K, Le E, Bin JP, et al. Quantification of renal blood flow with contrast induced ultrasound. J Am Coll Cardiol 2001;37:1135–1140.

    Article  PubMed  CAS  Google Scholar 

  38. Visser MO, Leighton JO, Bor, Von de et al. Renal blood flow in neonates: quantification with color flow and pulsed Doppler US. Radiology 1992;183:441–444.

    PubMed  CAS  Google Scholar 

  39. Vallee JP, Lazeyras F, Khan HG, et al. Absolute renal blood flow quantification by dynamic MRI with Gd-DTPA. Eur Radiol 2000;10:1245–1252.

    Article  PubMed  CAS  Google Scholar 

  40. Young LS, Regan MC, Barry MK, et al. Methods of renal blood flow measurement. Urol Res 1996;24:149–160.

    Article  PubMed  CAS  Google Scholar 

  41. West ML, Marsden PA, Richardson RMA. New clinical approach to evaluate disorders of potassium excretion. Miner Electrolyte Metab 1986;12:234–238.

    PubMed  CAS  Google Scholar 

  42. Alconcher LF, Castro C, Quintana D, et al. Urinary calcium excretion in healthy school children. Pediatr Nephrol 1997;11:186–188.

    Article  PubMed  CAS  Google Scholar 

  43. Bijvoet OLM: Relation of plasma phosphate concentration to renal tubular reabsorption of phosphate. Clin Sci 1969;37:23–26.

    PubMed  CAS  Google Scholar 

  44. Alon U, Hellerstein S. Assessment and interpretation of the tubular threshold for phosphate in infants and children. Pediatr Nephrol 1994;8:250–251.

    Article  PubMed  CAS  Google Scholar 

  45. Stapleton FB, Linshaw MA, Hassanein K, et al. Uric acid excretion in normal children. J Pediatr 1978;92:911–914.

    Article  PubMed  CAS  Google Scholar 

  46. Stapleton FB, Nash DA. A screening test for hyperuricosuria. J Pediatr 1983;192:88–90.

    Article  Google Scholar 

  47. DeSanto NG, Di Iorio B, Capasso G, et al. Population based data on urinary excretion of calcium, magnesium, oxalate, phosphate and uric acid in children from Cimitile (Southern Italy). Pediatr Nephrol 1992;6:149–157.

    Article  CAS  Google Scholar 

  48. Norman ME, Feldman NI, Cohn RM, et al. Urinary citrate excretion in the diagnosis of distal tubular acidosis. J Pediatr 1978;82:394–400.

    Google Scholar 

  49. Kirschbaum B, Sica D, Anderson FP. Urine electrolytes and the urine anion and osmolar gaps. J Lab Clin Med 1999;133:597–604.

    Article  PubMed  CAS  Google Scholar 

  50. Abelow B (ed.). Urinary Anion Gap. In Understanding Acid–Base. Baltimore, Williams & Wilkins, 1998, pp. A57–A59

    Google Scholar 

  51. Sulyok E, Guignard JP: Relationship of urinary anion gap to urinary ammonium excretion in the neonate. Biol Neonate 1990;57:98–106.

    Article  PubMed  CAS  Google Scholar 

  52. Fukugawa M, Kurokawa K, Papadakis MA. Hyperosmolar disorders and osmolar gaps. In Current Medical Diagnosis and Treatment. McPhee SJ, Papadakis MA (eds.). New York, McGraw Hill, Lange, 2008, p. 764.

    Google Scholar 

  53. Santos F, Orejas G, Foreman JW, Chan JCM. Diagnostic workup of renal disorder. Curr Probl Pediatr 1991;21:48–74.

    PubMed  CAS  Google Scholar 

  54. Skinner R, Cole M, Pearson ADJ, et al. Specificity of pH and osmolality of early morning urine sample in assessing distal renal tubular function in children. BMJ 1996;312:1337–1338.

    Article  PubMed  CAS  Google Scholar 

  55. Battle DC, Sehy JT, Roseman MK, et al. Clinical and pathophysiological spectrum of acquired distal renal tubular acidosis. Kidney Int 1981;20:389–396.

    Article  Google Scholar 

  56. Dubose TD Jr. Hydrogen ion secretion by the collecting duct as a determinant of the urine to blood pCO2 gradient in alkaline urine. J Clin Invest 1962;69:45–156.

    Google Scholar 

  57. Aronson AS, Svenningsen NW. DDAVP tests for estimation for renal concentrating capacity in infants and children. Arch Dis Child 1974;49:654–659.

    Article  PubMed  CAS  Google Scholar 

  58. Marild S, Jodal U, Jonasson G, et al. Reference values for renal concentrating capacity in children by the desmopressin test. Pediatr Nephrol 1992;6:254–257.

    Article  PubMed  CAS  Google Scholar 

  59. Rodriguez-Soriano J, Vallo A, Castillo G, Oliveros R. Renal handling of water and sodium in infancy and childhood: a study using clearance methods during hypotonic saline diuresis. Kidney Int 1981;20:700–704.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Friedman, A. (2009). Laboratory Assessment and Investigation of Renal Function. In: Avner, E., Harmon, W., Niaudet, P., Yoshikawa, N. (eds) Pediatric Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76341-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76341-3_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76327-7

  • Online ISBN: 978-3-540-76341-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics