Encyclopedia of Applied and Computational Mathematics

2015 Edition
| Editors: Björn Engquist

Actin Cytoskeleton, Multi-scale Modeling

  • Hans G. Othmer
Reference work entry
DOI: https://doi.org/10.1007/978-3-540-70529-1_60


Actin polymerization; Cell motility; Force generation


Cell locomotion is essential in numerous processes such as embryonic development, the immune response, and wound healing. Movement requires forces, which are generated by utilizing the chemical free energy in ATP to build actin networks and power myosin motor contraction. In solution, actin monomers (G-actin) assemble into two-stranded filaments (F-actin), bundles of filaments and gels. The helical F-actin filament is asymmetric, with a barbed or plus end and a pointed or minus end, and this leads to asymmetric reaction kinetics at the two ends. In solution, G-actin primarily contains ATP, but a G-ATP monomer that is incorporated in a filament subsequently hydrolyzes its bound ATP into ADP-Pi-actin and releases the phosphate Pi to yield G-ADP. As a result maintenance of actin structures at steady state requires a constant energy supply in the form of ATP. All three G-actin types bind to filament tips, but with...

This is a preview of subscription content, log in to check access.



Research supported by NSF grants DMS-0517884 and DMS-0817529.


  1. 1.
    Gardel, M.L., Sabass, B., Ji, L., Danuser, G., Schwarz, U.S., Waterman, C.M.: Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J. Cell Biol. 183, 999–1005 (2008)CrossRefGoogle Scholar
  2. 2.
    Svitkina, T.M., Borisy, G.G.: Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999)CrossRefGoogle Scholar
  3. 3.
    Ponti, A., Machacek, M., Gupton, S.L., Waterman-Storer, C.M., Danuser, G.: Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004)CrossRefGoogle Scholar
  4. 4.
    Ponti, A., Matov, A., Adams, M., Gupton, S., Waterman-Storer, C.M., Danuser, G.: Periodic patterns of actin turnover in lamellipodia and lamellae of migrating epithelial cells analyzed by quantitative fluorescent speckle microscopy. Biophys. J. 89, 3456–3469 (2005)CrossRefGoogle Scholar
  5. 5.
    Hotulainen, P., Lappalainen, P.: Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006)CrossRefGoogle Scholar
  6. 6.
    Bray, D.: Cell Movements: From Molecules to Motility. Garland Pub., New York (2001)Google Scholar
  7. 7.
    Ananthakrishnan, R., Ehrlicher, A.: The forces behind cell movement. Int. J. Biol. Sci. 3, 303–317 (2007)CrossRefGoogle Scholar
  8. 8.
    Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Inc, Sunderland (2001)Google Scholar
  9. 9.
    Boal, D.: Mechanics of the Cell. Cambridge University Press, Cambridge (2002)Google Scholar
  10. 10.
    Li, S., Guan, J.L., Chien, S.: Biochemistry and biomechanics of cell motility. Annu. Rev. Biomed. Eng. 7, 105–150 (2005)CrossRefGoogle Scholar
  11. 11.
    Mofrad, M.R.K.: Rheology of the cytoskeleton. Annu. Rev. Fluid Mech. 41, 433–453 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Geiger, B., Spatz, J.P., Bershadsky, A.D.: Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10, 21–33 (2009)CrossRefGoogle Scholar
  13. 13.
    Mogilner, A.: Mathematics of cell motility: have we got its number? J. Math. Biol. 58, 105–134 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hu, J., Othmer, H.G.: A theoretical analysis of filament length fluctuations in actin and other polymers. J. Math. Biol., DOI 10.1007/S00285-010-0400-6 (2011)Google Scholar
  15. 15.
    Hu, J., Matzavinos, A., Othmer, H.G.: A theoretical approach to actin filament dynamics. J. Stat. Phys. 128, 111–138 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996)CrossRefGoogle Scholar
  17. 17.
    Mogilner, A., Edelstein-Keshet, L.: Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83, 1237–1258 (2002)CrossRefGoogle Scholar
  18. 18.
    Mogilner, A., Oster, G.: Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J. 84, 1591–1605 (2003)CrossRefGoogle Scholar
  19. 19.
    Dickinson, R.B., Purich, D.L.: Clamped-filament elongation model for actin-based motors. Biophys. J. 82, 605–617 (2002)CrossRefGoogle Scholar
  20. 20.
    Mullins, R.D., Heuser, J.A., Pollard, T.A.: The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl. Acad. Sci. U.S.A. 95, 6181–6186 (1998)CrossRefGoogle Scholar
  21. 21.
    Chen, H., Bernstein, B.W., Bamburg, J.R.: Regulating actin-filament dynamics in vivo. Trends Biochem. Sci. 25, 19–23 (2000) reviewCrossRefGoogle Scholar
  22. 22.
    Pollard, T.D., Borisy, G.G.: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)CrossRefGoogle Scholar
  23. 23.
    Renkawitz, J., Schumann, K., Weber, M., Lämmermann, T., Pflicke, H., Piel, M., Polleux, J., Spatz, J.P., Sixt, M.: Adaptive force transmission in amoeboid cell migration. Nat. Cell Biol. 11, 1438–1443 (2009)CrossRefGoogle Scholar
  24. 24.
    Insall, R.H., Machesky, L.M.: Actin dynamics at the leading edge: from simple machinery to complex networks. Dev. Cell 17, 310–322 (2009)CrossRefGoogle Scholar
  25. 25.
    Gracheva, M.E., Othmer, H.G.: A continuum model of motility in ameboid cells. Bull. Math. Biol. 66, 167–194 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Stolarska, M.A., Kim, Y., Othmer, H.G.: Multi-scale models of cell and tissue dynamics. Philos. Trans. R. Soc. A 367, 3525 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hans G. Othmer
    • 1
  1. 1.Department of MathematicsUniversity of MinnesotaMinneapolisUSA