Skip to main content

Computational Plasma Physics

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics
  • 206 Accesses

Plasmas and High-Energy-Density Matter

Recent advances in high-performance computing and continuing improvements in algorithms and models have opened an avenue to a deeper understanding of plasmas and at the same time provided insight into the accuracy of kinetic theory. Advanced computing architectures have allowed researchers to simulate complicated plasma processes with undreamed of fidelity. Computational plasma physics spans a wide variety of methods and applications which will be presented in an overview form. The focus will be on particle-based, continuum phase-space, and fluid-based methods relevant for warm dense matter, hot dense matter, and magnetic fusion plasmas. Unfortunately we do not cover in any detail gyro-kinetic codes used in modeling magnetic fusion plasmas.

Plasmas consist of mobile-charged particles (ions and electrons) interacting by long-range Coulombic N-body forces and exhibiting collective effects with the electric or magnetic fields. This simple definition...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alder, B.J., Wainwright, T.E.: J. Chem. Phys. 31, 459 (1959)

    Article  MathSciNet  Google Scholar 

  2. Atzeni, S., Meyer-Ter-Vehhn, J.: The Physics of Inertial Fusion. Oxford University Press, New York (2009)

    Google Scholar 

  3. Balescu, R.: Phys. Fluids 4, 94 (1961)

    Article  MathSciNet  Google Scholar 

  4. Balescu, R.: Statistical Mechanics of Charged Particles. Interscience Publishers, New York (1963)

    MATH  Google Scholar 

  5. Belyi, V.V., Kukharenko, Y.A.: J. Stat. Phys. 6, P06002 (2009)

    MathSciNet  Google Scholar 

  6. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. Taylor and Francis Group, New York (2005)

    Google Scholar 

  7. Birn, J., Drake, J.F., Shay, M.A., Rogers, B.N., Denton, R.E., Hesse, M.: J. Geophys. Res.: Space Phys. 106, 3715 (1978–2012)

    Google Scholar 

  8. Bonitz, M.: Quantum Kinetic Theory. B. G. Teubner, Stuttgart/Leipzig (1998)

    MATH  Google Scholar 

  9. Bowers, R.L., Wilson, J.R.: Numerical Modeling in Applied Physics and Astrophysics. Jones and Bartlett Publishers, New York (1991)

    MATH  Google Scholar 

  10. Bowers, K.J., Albright, B.J., Bergen, B., Yin, L., Barker, K.J., Kerbyson, D.J.: ACM/IEEE Conference on Supercomputing, Washington, DC (2008)

    Google Scholar 

  11. Bowers, K.J., Albright, B.J., Yin, L., Bergen, B., Kwan, T.J.T.: Phys. Plasmas 15, 055703 (2008)

    Article  Google Scholar 

  12. Boyd, T.J.M., Sanderson, J.J.: The Physics of Plasmas. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  13. Braginskii, I.: In: Leontovich, M.A. (ed.) Reviews of Plasma Physics, vol. I, p. 205. Consultants Bureau, New York (1965)

    Google Scholar 

  14. Buet, C., Cordier, S.: J. Comput. Phys. 145, 228 (1998)

    Article  MathSciNet  Google Scholar 

  15. Buet, C., Cordier, S., Degond, P., Lemou, M.: J. Comput. Phys. 133, 310 (1997)

    Article  MathSciNet  Google Scholar 

  16. Candy, J., Waltz, R.E.: J. Comput. Phys. 186, 545 (2003)

    Article  MathSciNet  Google Scholar 

  17. Car, R., Parrinello, M.: Phys. Rev. Lett. 55, 2471 (1985)

    Article  Google Scholar 

  18. Castor, J.: Radiation Hydrodynamics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  19. Chang, J., Cooper, G.: J. Comput. Phys. 6, 1 (1970)

    Article  Google Scholar 

  20. Cheng, C.Z., Knorr, G.: J. Comput. (1976)

    Google Scholar 

  21. Daughton, W., Roytershteyn, V., Karimabadi, H., Yin, L., Albright, B.J., Bergen, B., Bowers, K.J.: Nat.: Phys. 7, 539 (2011)

    Google Scholar 

  22. Dawson, J.M.: Rev. Mod. Phys. 55, 403 (1983)

    Article  Google Scholar 

  23. Dendy, R.O.: Plasma Physics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  24. Dimits, A.M., Williams, T.J., Byers, J.A., Cohen, B.I.: Phys. Rev. Lett. 77, 71 (1996)

    Article  Google Scholar 

  25. Dorland, W., Jenko, F., Kotschenreuther, M., Rogers, B.N.: Phys. Rev. Lett. 85, 5579 (2000)

    Article  Google Scholar 

  26. Drake, R.P.: High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics. Springer, Berlin/Heidelberg (2006)

    Google Scholar 

  27. Duclous, R., Dubroca, B., Filbet, F., Tikhonchuk, V.: J. Comput. Phys. 228, 5072 (2009)

    Article  MathSciNet  Google Scholar 

  28. Epperlein, J.: J. Comput. Phys. 112, 291 (1994)

    Article  Google Scholar 

  29. Ezzuddin, Z.Y.: Numerical solutions of non-linear plasma equations by finite element method, Ph.D thesis (UCLA) (1975)

    Google Scholar 

  30. Fehske, H., Schneider, R., Weisse, A.: Computational Many-Particle Physics. Springer, Berlin/Heidelberg (2008)

    Book  Google Scholar 

  31. Fijalkow, E.: Comput. Phys. Commun. 116, 319 (1999)

    Article  MathSciNet  Google Scholar 

  32. Filbet, F., Pareschi, L.: J. Comput. Phys. 179, 1 (2002)

    Article  MathSciNet  Google Scholar 

  33. Filbet, F., Sonnendrucker, E., Bertrand, P.: J. Comput. Phys. 172, 166 (2001)

    Article  MathSciNet  Google Scholar 

  34. Fiuza, F., Fonseca, R.A., Silva, L.O., Tonge, J., May, J., Mori, W.B.: IEEE Trans. Plasma Sci. 39, 2618 (2011)

    Article  Google Scholar 

  35. Fonseca, R., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T., Adam, J.C.: Proceedings of the International Conference on Computational Science-Part III, Washington, DC. Springer, London (2002)

    Google Scholar 

  36. Friedberg, J.P.: Plasma Physics and Fusion Energy. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  37. Friedman, A., Cohen, R.H., Grote, D.P., Lund, S.M., Sharp, W.M., Kishek, R.A.: IEEE Trans. Plasma Sci. 42, 1321 (2014)

    Article  Google Scholar 

  38. Goedbloed, J.P., Keppens, R., Poedts, S.: Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  39. Graziani, F., Desjarlais, M.P., Redmer, R., Trickey, S.B.: Frontiers and Challenges in Warm Dense Matter. Springer, Berlin/Heidelberg (2014)

    Book  MATH  Google Scholar 

  40. Griebel, M., Knapek, S., Zumbusch, G.: Numerical Simulation in Molecular Dynamics. Springer, Berlin/Heidelberg (2007)

    MATH  Google Scholar 

  41. Gygi, F., Draeger, E.W., de Supinski, B.R., Yates, R.K., Franchetti, F., Kral, S., Lorenz, J., Ueberhuber, C.W., Gunnels, J.A., Sexton, J.C.: Large-scale first-principles molecular dynamics simulations on the BlueGene/L platform using the Qbox code. In: Proceedings of Supercomputing 2005, pp. 24. Association for Computing Machinery (2005)

    Google Scholar 

  42. Hittinger, J.A.F., Dorr, M.R.: J. Phys.: Conf. Ser. 46, 422 (2006)

    Google Scholar 

  43. Hockney, R.W., Eastwood, J.W.: Computer Simulation in Plasmas. Taylor and Francis Group, New York (1988)

    MATH  Google Scholar 

  44. Jardin, S.C.: Computational Methods in Plasma Physics. Taylor and Francis Group, New York (2010)

    Book  MATH  Google Scholar 

  45. Jones, C.S., Murillo, M.S.: HEDP 3, 379 (2007)

    Google Scholar 

  46. Joshi, C., Clayton, C.E., Mori, W.B., Dawson, J.M., Katsouleas, T.: Comments Plasma Phys. Control. Fusion 16, 65 (1994)

    Google Scholar 

  47. Katsouleas, T., Dawson, J.M.: Phys. Rev. Lett. 51, 392 (1983)

    Article  Google Scholar 

  48. Kohn, W., Sham, L.J.: Phys. Rev. A 140, 1133 (1965)

    Article  MathSciNet  Google Scholar 

  49. Koren, B., Ebert, U., Gombosi, T., Guillard, H., Keppens, R., Knoll, D.: J. Comput. Phys. 231, 717–1080 (2012)

    Article  MathSciNet  Google Scholar 

  50. Kotschenreuther, M., Rewoldt, G., Tang, W.M.: Comput. Phys. Commun. 88, 128 (1995)

    Article  Google Scholar 

  51. Krall, N.A., Trivelpiece, A.W.: Principles of Plasma Physics. McGraw-Hill, New York (1973)

    Google Scholar 

  52. Kremp, D., Schlanges, M., Kraeft, W.D.: Quantum Statistics of Non-ideal Plasmas. Springer, Berlin/Heidelberg (2005)

    MATH  Google Scholar 

  53. Kruer, W.L.: The Physics of Laser Plasma Interactions. Westview Press, Cambridge Mass (2003)

    Google Scholar 

  54. Lemou, M.: Numer. Math. 78, 597 (1998)

    Article  MathSciNet  Google Scholar 

  55. Liboff, R.L.: Kinetic Theory. Prentice-Hall, Englewood Cliffs (1990)

    MATH  Google Scholar 

  56. Lin, Z., Tang, W.M., Lee, W.W.: Phys. Plasmas 2, 2975 (1995)

    Article  Google Scholar 

  57. Lindl, J.D.: Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive. American Institute of Physics Press, New York (1998)

    Google Scholar 

  58. Michta, D., Graziani, F., Luu, T., Pruet, J.: Phys. Plasmas 17, 012707 (2010)

    Article  Google Scholar 

  59. Pareschi, L., Russo, G., Toscan, G.: J. Comput. Phys. 165, 216 (2000)

    Article  MathSciNet  Google Scholar 

  60. Ren, C.: HEDP Summer School (2013)

    Google Scholar 

  61. Ricci, P., Lapenta, G.: Phys. Plasmas 9, 430 (2002)

    Article  Google Scholar 

  62. Rosenbluth, M.N., MacDonald, W.M., Judd, D.L.: Phys. Rev. Lett. 107, 1 (1957)

    MathSciNet  Google Scholar 

  63. Salzman, D.: Atomic Physics in Hot Plasmas. Oxford University Press, New York (1998)

    Google Scholar 

  64. Schleife, A., Draeger, E.W., Anisimov, V.M., Correa, A.A., Kanai, Y.: IEEE Comput. Sci. Eng. (2014)

    Google Scholar 

  65. Strozzi1, D.J., Langdon, A.B., Williams, E.A., Bers, A., Brunner, S.: In: Shoucri, M. (ed.) Eulerian Codes for the Numerical Solution of the Kinetic Equations of Plasmas. Physics Research and Technology. Nova Science Publishers, New York (2011)

    Google Scholar 

  66. Swanson, D.G.: Plasma Kinetic Theory. CRC Press/Taylor and Francis Group, New York (2008)

    Book  Google Scholar 

  67. Telegin, V.I., Vychisl, Z.h.: Math. Phys. 16, 1191 (1976)

    Google Scholar 

  68. The Cimarron Collaboration: HEDP 8, 105 (2012)

    Google Scholar 

  69. Tuckerman, M.E.: J. Phys.: Condens. Matter 14, 1297 (2002)

    MathSciNet  Google Scholar 

  70. Tzoufras, M., Bell, A.R., Norreys, P.A., Tsung, F.S.: J. Comput. Phys. 230, 6475 (2011)

    Article  Google Scholar 

  71. Tzoufras, M., Tableman, A., Tsung, F.S., Mori, W.B., Bell, A.R.: Phys. Plasmas 20, 056303 (2013)

    Article  Google Scholar 

  72. VASP (Vienna Ab initio Simulation Package). https://www.vasp.at/ (2014)

  73. Yee, K.: IEEE Trans. Antennas Propag. 14, 302 (1966)

    Article  Google Scholar 

Download references

Acknowledgements

I am deeply grateful to my colleagues for their help in putting this article together. Their help was indispensable and my continued collaborations with them over the years have made me a better scientist. I wish to thank Brian Albright, Bruce Cohen, Alfredo Correa, Alex Friedman, Jeffrey Hittinger, Michael Desjarlais, Michael Murillo, Liam Stanton, Michail Tzoufras, and Vyacheslav Lukin. This work is performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Graziani, F.R. (2015). Computational Plasma Physics. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_585

Download citation

Publish with us

Policies and ethics