Encyclopedia of Applied and Computational Mathematics

2015 Edition
| Editors: Björn Engquist

A Posteriori Error Estimates of Quantities of Interest

  • Serge Prudhomme
Reference work entry
DOI: https://doi.org/10.1007/978-3-540-70529-1_549

Synonyms

Adjoint-based method; Dual-weighted residual method; Goal-oriented error estimation

Short Description

A posteriori error estimation for quantities of interest is concerned with the development of computable estimators of approximation errors (due to discretization and/or model reduction) measured with respect to user-defined quantities of interest that are functionals of the solutions to initial boundary-value problems.

Description

A posteriori error estimation for quantities of interest is the activity in computational sciences and engineering that focuses on the development of computable estimators of the error in approximations of initial- and/or boundary-value problems measured with respect to user-defined quantities of interest. The use of discretization methods (such as finite element and finite volume methods) to approximate mathematical problems based on partial differential equations necessarily produces approximations that are in error when compared to the exact...

This is a preview of subscription content, log in to check access.

References

  1. 1.
    Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Almeida, R.C., Oden, J.T.: Solution verification, goal-oriented adaptive methods for stochastic advection-diffusion problems. Comput. Methods Appl. Mech. Eng. 199(37–40), 2472–2486 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Babuška, I., Rheinboldt, W.C.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15(4), 736–754 (1978)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Oxford University Press, New York (2001)MATHGoogle Scholar
  5. 5.
    Bangerth, W., Rannacher, R.: Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 9(2), 575–591 (2001)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bangerth, W., Rannacher, R.: Adaptive Finite Element Methods for Differential Equations. Lectures in Mathematics. ETH Zürich, Birkhäuser (2003)CrossRefMATHGoogle Scholar
  7. 7.
    Bauman, P.T., Oden, J.T., Prudhomme, S.: Adaptive multiscale modeling of polymeric materials with Arlequin coupling and Goals algorithms. Comput. Methods Appl. Mech. Eng. 198, 799–818 (2009)CrossRefMATHGoogle Scholar
  8. 8.
    Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: basic analysis and examples. East West J. Numer. Math. 4, 237–264 (1996)MathSciNetMATHGoogle Scholar
  9. 9.
    Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Braack, M., Ern, A.: A posteriori control of modeling errors and discretization errors. Multiscale Model. Simul. 1(2), 221–238 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Butler, T., Dawson, C., Wildey, T.: A posteriori error analysis of stochastic spectral methods. SIAM J. Sci. Comput. 33, 1267–1291 (2011)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Mathelin, L., Le Maître, O.: Dual-based a posteriori error estimate for stochastic finite element methods. Commun. Appl. Math. Comput. Sci. 2(1), 83–115 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Mommer, M., Stevenson, R.P.: A goal-oriented adaptive finite element method with convergence rates. SIAM J. Numer. Anal. 47(2), 861–886 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Nochetto, R.H., Siebert, K.G., Veeser, A.: Theory of adaptive finite element methods: An introduction. In: DeVore, R.A., Kunoth, A. (eds.) Multiscale, Nonlinear and Adaptive Approximation, pp. 409–542. Springer, Berlin (2009)CrossRefGoogle Scholar
  15. 15.
    Oden, J.T., Prudhomme, S.: Goal-oriented error estimation and adaptivity for the finite element method. Comput. Math. Appl. 41, 735–756 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Oden, J.T., Prudhomme, S.: Estimation of modeling error in computational mechanics. J. Comput. Phys. 182, 496–515 (2002)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Paraschivoiu, M., Peraire, J., Patera, A.T.: A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations. Comput. Methods Appl. Mech. Eng. 150(1–4), 289–312 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Prudhomme, S., Oden, J.T.: On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput. Methods Appl. Mech. Eng. 176, 313–331 (1999)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Prudhomme, S., Oden, J.T.: Computable error estimators and adaptive techniques for fluid flow problems. In: Barth, T.J., Deconinck, H. (eds.) Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol. 25, pp. 207–268. Springer, Heidelberg (2003)Google Scholar
  20. 20.
    Prudhomme, S., Chamoin, L., ben Dhia, H., Bauman, P.T.: An adaptive strategy for the control of modeling error in two-dimensional atomic-to-continuum coupling simulations. Comput. Methods Appl. Mech. Eng. 198(21–26), 1887–1901 (2001)Google Scholar
  21. 21.
    Stein, E., Rüter, M.: Finite element methods for elasticity with error-controlled discretization and model adaptivity. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Solids and Structures, vol. 2, chapter 2, pp. 5–58. Wiley (2004)Google Scholar
  22. 22.
    Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)CrossRefMATHGoogle Scholar
  23. 23.
    van der Zee, K.G., Oden, J.T., Prudhomme, S., Hawkins-Daarud, A.J.: Goal-oriented error estimation for Cahn-Hilliard models of binary phase transition. Numer. Methods Partial Differ. Equ. 27(1), 160–196 (2011)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Serge Prudhomme
    • 1
  1. 1.Department of Mathematics and Industrial EngineeringÉcole Polytechnique de MontréalMontréalCanada