Introduction
Hyperbolic partial differential equations (PDEs) are mathematical models of wave phenomena, with applications in a wide range of scientific and engineering fields such as electromagnetic radiation, geosciences, fluid and solid mechanics, aeroacoustics, and general relativity. The theory of hyperbolic problems, including Friedrichs and Kreiss theories, has been well developed based on energy estimates and the method of Fourier and Laplace transforms [8, 16]. Moreover, stable numerical methods, such as the finite difference method [14], the finite volume method [17], the finite element method [6], the spectral method [4], and the boundary element method [11], have been proposed to compute approximate solutions of hyperbolic problems. However, the development of the theory and numerics for hyperbolic PDEs has been based on the assumption that all input data, such as coefficients, initial data, boundary and force terms, and computational domain, are exactly known.
There is an...
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Babuška, I., Motamed, M., Tempone, R.: A stochastic multiscale method for the elastodynamic wave equations arising from fiber composites (2013, preprint)
Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)
Babuška, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194, 1251–1294 (2005)
Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Springer, Berlin/New York (1989)
Charrier, J.: Strong and weak error estimates for elliptic partial differential equations with random coefficients. IMA J. Numer. Anal. 50, 216–246 (2012)
Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Studentlitteratur, Lund (1996)
Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)
Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7, 345–392 (1954)
Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71, 65–87 (2003)
Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)
Gibson, W.: The Method of Moments in Electromagnetics. Chapman and Hall/CRC, Boca Raton (2008)
Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56, 607–617 (2008)
Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3, 505–518 (2008)
Gustafsson, B., Kreiss, H.O., Ologer, J.: Time Dependent Problems and Difference Methods. Wiley-Interscience, New York (1995)
Hou, T.Y., Wu, X.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)
Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–298 (1970)
Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge/New York (2002)
Lin, G., Su, C.-H., Karniadakis, G.E.: Predicting shock dynamics in the presence of uncertainties. J. Comput. Phys. 217, 260–276 (2006)
Lin, G., Su, C.-H., Karniadakis, G.E.: Stochastic modeling of random roughness in shock scattering problems: theory and simulations. Comput. Methods Appl. Mech. Eng. 197, 3420–343 (2008)
Loéve, M.: Probability Theory I. Graduate Texts in Mathematics, vol. 45. Springer, New York (1977)
Loéve, M.: Probability Theory II. Graduate Texts in Mathematics, vol. 46. Springer, New York (1978)
Matthies, H.G., Kees, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194, 1295–1331 (2005)
Motamed, M., Nobile, F., Tempone, R.: Analysis and computation of the elastic wave equation with random coefficients (2013, submitted)
Motamed, M., Nobile, F., Tempone, R.: A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123, 493–536 (2013)
Nobile, F., Tempone, R.: Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Meth. Eng. 80, 979–1006 (2009)
Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2411–2442 (2008)
Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)
Poette, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228, 2443–2467 (2009)
Rodino, L.: Linear Partial Differential Operators in Gevrey Spaces. World Scientific, Singapore (1993)
Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Doklady Akademii Nauk SSSR 4, 240–243 (1963)
Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed. Commun. Comput. Phys. 8, 226–248 (2010)
Todor, R.A., Schwab, C.: Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27, 232–261 (2007)
Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 67–87 (2008)
Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Intrusive projection methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229, 6485–6511 (2010)
Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Roe solver with entropy corrector for uncertain hyperbolic systems. Comput. Appl. Math. 235, 491–506 (2010)
Wang, X., Karniadakis, G.E.: Long-term behavior of ploynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195, 5582–5596 (2006)
Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)
Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191, 4927–4948 (2002)
Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer-Verlag Berlin Heidelberg
About this entry
Cite this entry
Motamed, M., Nobile, F., Tempone, R. (2015). Analysis and Computation of Hyperbolic PDEs with Random Data. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_527
Download citation
DOI: https://doi.org/10.1007/978-3-540-70529-1_527
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70528-4
Online ISBN: 978-3-540-70529-1
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering