Skip to main content

Analysis and Computation of Hyperbolic PDEs with Random Data

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics

Introduction

Hyperbolic partial differential equations (PDEs) are mathematical models of wave phenomena, with applications in a wide range of scientific and engineering fields such as electromagnetic radiation, geosciences, fluid and solid mechanics, aeroacoustics, and general relativity. The theory of hyperbolic problems, including Friedrichs and Kreiss theories, has been well developed based on energy estimates and the method of Fourier and Laplace transforms [8, 16]. Moreover, stable numerical methods, such as the finite difference method [14], the finite volume method [17], the finite element method [6], the spectral method [4], and the boundary element method [11], have been proposed to compute approximate solutions of hyperbolic problems. However, the development of the theory and numerics for hyperbolic PDEs has been based on the assumption that all input data, such as coefficients, initial data, boundary and force terms, and computational domain, are exactly known.

There is an...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babuška, I., Motamed, M., Tempone, R.: A stochastic multiscale method for the elastodynamic wave equations arising from fiber composites (2013, preprint)

    Google Scholar 

  2. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45, 1005–1034 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Tempone, R., Zouraris, G.E.: Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation. Comput. Methods Appl. Mech. Eng. 194, 1251–1294 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods. Springer, Berlin/New York (1989)

    Book  MATH  Google Scholar 

  5. Charrier, J.: Strong and weak error estimates for elliptic partial differential equations with random coefficients. IMA J. Numer. Anal. 50, 216–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Computational Differential Equations. Studentlitteratur, Lund (1996)

    MATH  Google Scholar 

  7. Fishman, G.S.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, New York (1996)

    Book  MATH  Google Scholar 

  8. Friedrichs, K.O.: Symmetric hyperbolic linear differential equations. Commun. Pure Appl. Math. 7, 345–392 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71, 65–87 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  MATH  Google Scholar 

  11. Gibson, W.: The Method of Moments in Electromagnetics. Chapman and Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  12. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56, 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gottlieb, D., Xiu, D.: Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3, 505–518 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Gustafsson, B., Kreiss, H.O., Ologer, J.: Time Dependent Problems and Difference Methods. Wiley-Interscience, New York (1995)

    Google Scholar 

  15. Hou, T.Y., Wu, X.: Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230, 3668–3694 (2011)

    Article  MathSciNet  Google Scholar 

  16. Kreiss, H.-O.: Initial boundary value problems for hyperbolic systems. Commun. Pure Appl. Math. 23, 277–298 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge/New York (2002)

    Book  MATH  Google Scholar 

  18. Lin, G., Su, C.-H., Karniadakis, G.E.: Predicting shock dynamics in the presence of uncertainties. J. Comput. Phys. 217, 260–276 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, G., Su, C.-H., Karniadakis, G.E.: Stochastic modeling of random roughness in shock scattering problems: theory and simulations. Comput. Methods Appl. Mech. Eng. 197, 3420–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Loéve, M.: Probability Theory I. Graduate Texts in Mathematics, vol. 45. Springer, New York (1977)

    Google Scholar 

  21. Loéve, M.: Probability Theory II. Graduate Texts in Mathematics, vol. 46. Springer, New York (1978)

    Google Scholar 

  22. Matthies, H.G., Kees, A.: Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194, 1295–1331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Motamed, M., Nobile, F., Tempone, R.: Analysis and computation of the elastic wave equation with random coefficients (2013, submitted)

    Google Scholar 

  24. Motamed, M., Nobile, F., Tempone, R.: A stochastic collocation method for the second order wave equation with a discontinuous random speed. Numer. Math. 123, 493–536 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nobile, F., Tempone, R.: Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients. Int. J. Numer. Meth. Eng. 80, 979–1006 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2411–2442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 2309–2345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Poette, G., Després, B., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228, 2443–2467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rodino, L.: Linear Partial Differential Operators in Gevrey Spaces. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  30. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Doklady Akademii Nauk SSSR 4, 240–243 (1963)

    MATH  Google Scholar 

  31. Tang, T., Zhou, T.: Convergence analysis for stochastic collocation methods to scalar hyperbolic equations with a random wave speed. Commun. Comput. Phys. 8, 226–248 (2010)

    MathSciNet  Google Scholar 

  32. Todor, R.A., Schwab, C.: Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27, 232–261 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50, 67–87 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Intrusive projection methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229, 6485–6511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tryoen, J., Le Maitre, O., Ndjinga, M., Ern, A.: Roe solver with entropy corrector for uncertain hyperbolic systems. Comput. Appl. Math. 235, 491–506 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, X., Karniadakis, G.E.: Long-term behavior of ploynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195, 5582–5596 (2006)

    Article  MATH  Google Scholar 

  37. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27, 1118–1139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xiu, D., Karniadakis, G.E.: Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Eng. 191, 4927–4948 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Motamed, M., Nobile, F., Tempone, R. (2015). Analysis and Computation of Hyperbolic PDEs with Random Data. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_527

Download citation

Publish with us

Policies and ethics