Skip to main content

Radar Imaging

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics

Synonyms

Inverse Synthetic-Aperture Radar (ISAR); RAdio Detection and Ranging (Radar); Synthetic-Aperture Radar (SAR)

Introduction

“Radar” is an acronym for RAdio Detection And Ranging. Radar was originally developed [3, 4, 27, 29, 32] as a technique for detecting objects and determining their positions by means of echolocation, and this remains the principal function of modern radar systems. However, radar systems have evolved over more than seven decades to perform an additional variety of very complex functions; one such function is imaging [5, 810, 12, 13, 17, 18, 23, 25].

Radar imaging shares much in common with optical imaging: both processes involve the use of electromagnetic waves to form images. The main difference between the two is that the wavelengths of radar are much longer than those of optics. Because the resolving ability of an imaging system depends on the ratio of the wavelength to the size of the aperture, radar imaging systems require an aperture many thousands of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borden, B.: Radar Imaging of Airborne Targets. Institute of Physics, Bristol/Philadelphia (1999)

    Book  MATH  Google Scholar 

  2. Borden, B.: Mathematical problems in radar inverse scattering. Inverse Probl. 18, R1–R28 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bowen, E.G.: Radar Days. Hilgar, Bristol (1987)

    Google Scholar 

  4. Buderi, R.: The Invention that Changed the World. Simon & Schuster, New York (1996)

    Google Scholar 

  5. Carrara, W.C., Goodman, R.G., Majewski, R.M.: Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Artech House, Boston (1996)

    MATH  Google Scholar 

  6. Cheney, M., Borden, B.: Fundamentals of Radar Imaging. SIAM, Philadelphia (2009)

    Book  MATH  Google Scholar 

  7. Cook, C.E., Bernfeld, M.: Radar Signals. Academic, New York (1967)

    Google Scholar 

  8. Cumming, I.G., Wong, F.H.: Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Artech House, Boston (2005)

    Google Scholar 

  9. Curlander, J.C., McDonough, R.N.: Synthetic Aperture Radar. Wiley, New York (1991)

    MATH  Google Scholar 

  10. Cutrona, L.J.: Synthetic Aperture Radar. In: Skolnik, M. (ed.) Radar Handbook, 2nd edn. McGraw-Hill, New York (1990)

    Google Scholar 

  11. Edde, B.: Radar: Principles, Technology, Applications. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  12. Elachi, C.: Spaceborne Radar Remote Sensing: Applications and Techniques. IEEE, New York (1987)

    Google Scholar 

  13. Franceschetti, G., Lanari, R.: Synthetic Aperture Radar Processing. CRC, New York (1999)

    Google Scholar 

  14. Friedlander, F.G.: Introduction to the Theory of Distributions. Cambridge University Press, New York (1982)

    MATH  Google Scholar 

  15. Ishimaru, A.: Wave Propagation and Scattering in Random Media. IEEE, New York (1997)

    MATH  Google Scholar 

  16. Jackson, J.D.: Classical Electrodynamics, 2nd edn. Wiley, New York (1962)

    MATH  Google Scholar 

  17. Jakowatz, C.V., Wahl, D.E., Eichel, P.H., Ghiglia, D.C., Thompson, P.A.: Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach. Kluwer, Boston (1996)

    Book  Google Scholar 

  18. Mensa, D.L.: High Resolution Radar Imaging. Artech House, Dedham (1981)

    Google Scholar 

  19. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  20. Natterer, F., Wübbeling, F.: Mathematical Methods in Imaging Reconstruction. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  21. Newton, R.G.: Scattering Theory of Waves and Particles. Dover, Mineola/New York (2002)

    MATH  Google Scholar 

  22. Oughstun, K.E., Sherman, G.C.: Electromagnetic Pulse Propagation in Causal Dielectrics. Springer, New York (1997)

    Google Scholar 

  23. Rihaczek, A.W.: Principles of High-Resolution Radar. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  24. Skolnik, M.: Introduction to Radar Systems. McGraw-Hill, New York (1980)

    Google Scholar 

  25. Soumekh, M.: Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. Wiley, New York (1999)

    MATH  Google Scholar 

  26. Stakgold, I.: Green’s Functions and Boundary Value Problems, 2nd edn. Wiley-Interscience, New York (1997)

    MATH  Google Scholar 

  27. Stimson, G.W.: Introduction to Airborne Radar. SciTech, Mendham (1998)

    Book  Google Scholar 

  28. Sullivan, R.J.: Radar Foundations for Imaging and Advanced Concepts. SciTech, Raleigh (2004)

    Book  Google Scholar 

  29. Swords, S.S.: Technical History of the Beginnings of Radar. Peregrinus, London (1986)

    Book  Google Scholar 

  30. Treves, F.: Basic Linear Partial Differential Equations. Academic, New York (1975)

    MATH  Google Scholar 

  31. Ulaby, F.T., Elachi, C. (eds.) Radar Polarimetry for Geoscience Applications. Artech House, Norwood (1990)

    Google Scholar 

  32. Walsh, T.E.: Military radar systems: history, current position, and future forecast. Microw. J. 21, 87, 88, 91–95 (1978)

    Google Scholar 

  33. Wehner,D.: High-Resolution Radar, 2nd edn. Scitech, Raleigh (1995)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Naval Postgraduate School, the Mathematical Sciences Research Institute, and the Air Force Office of Scientific Research, which supported the writing of this entry under agreement number FA9550-09-1-0013. (Consequently the US Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the Air Force Research Laboratory or the US Government)

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Cheney, M., Borden, B. (2015). Radar Imaging. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_48

Download citation

Publish with us

Policies and ethics