Skip to main content

ADI Methods

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics

Mathematics Subject Classification

65M06; 65N06

Synonyms

Alternating direction implicit method; Splitting method

Description

Finite-difference methods have been extremely important to the numerical solution of partial differential equations. An ADI method is one of them with extraordinary features in structure simplicity, computational efficiency, and flexibility in applications.

The original ADI idea was proposed by D. W. Peaceman and H. H. Rachford, Jr., [12] in 1955. Later, J. Douglas, Jr., and H. H. Rachford, Jr., [3] were able to implement the algorithm by splitting the time-step procedure into two fractional steps. The strategy of the ADI approach can be readily explained in a contemporary way of modern numerical analysis. To this end, we let \(\mathcal{D}\) be a two-dimensional spacial domain and consider the following partial differential equation:

$$\displaystyle{ \frac{\partial u} {\partial t} = \mathcal{F}u + \mathcal{G}u,\ \ \ (x,y) \in \mathcal{D},\ t> t_{0}, }$$
...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chin, S.A.: A fundamental theorem on the structure of symplectic integrators. Phys. Lett. A 354, 373–376 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Descombes, S., Thalhammer, M.: An exact local error representation of exponential operator splitting methods for evolutionary problems and applications to linear Schrödinger equations in the semi-classical regime. BIT 50, 729–749 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Douglas, J. Jr., Rachford, H.H. Jr.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  4. D’Yakonov, E.G.: Difference schemes with splitting operator for multi-dimensional nonstationary problems. Zh. Vychisl. Mat. i Mat. Fiz. 2, 549–568 (1962)

    Google Scholar 

  5. Hausdorff, F.: Die symbolische Exponentialformel in der Gruppentheorie. Ber Verh Saechs Akad Wiss Leipzig 58, 19–48 (1906)

    MATH  Google Scholar 

  6. Hundsdorfer, W.H., Verwer, J.G.: Stability and convergence of the Peaceman-Rachford ADI method for initial-boundary value problems. Math. Comput. 53, 81–101 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2nd edn. Cambridge University Press, London/New York (2011)

    MATH  Google Scholar 

  8. Jahnke, T., Lubich, C.: Error bounds for exponential operator splitting. BIT 40, 735–744 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Marchuk, G.I.: Some applications of splitting-up methods to the solution of problems in mathematical physics. Aplikace Matematiky 1, 103–132 (1968)

    MATH  Google Scholar 

  10. McLachlan, R.I., Quispel, G.R.W.: Splitting methods. Acta Numer. 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peaceman, D.W., Rachford, H.H. Jr.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal. 9, 199–212 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sheng, Q.: Global error estimate for exponential splitting. IMA J. Numer. Anal. 14, 27–56 (1993)

    Article  Google Scholar 

  15. Sheng, Q.: Adaptive decomposition finite difference methods for solving singular problems-a review. Front. Math. China (by Springer) 4, 599–626 (2009)

    Google Scholar 

  16. Sheng, Q., Sun, H.: On the stability of an oscillation-free ADI method for highly oscillatory wave equations. Commun. Comput. Phys. 12, 1275–1292 (2012)

    Google Scholar 

  17. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Suzuki, M.: General theory of fractal path integrals with applications to many body theories and statistical physics. J. Math. Phys. 32, 400–407 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10, 545–551 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yanenko, N.N.: The Method of Fractional Steps; the Solution of Problems of Mathematical Physics in Several Variables. Springer, Berlin (1971)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Sheng, Q. (2015). ADI Methods. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_435

Download citation

Publish with us

Policies and ethics