Skip to main content

Optical Tomography: Applications

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics
  • 58 Accesses

Introduction

Optical tomography uses light in the visible or near-infrared spectral region to illuminate biological objects and build three-dimensional reconstructions of the interior. Because the energy of optical radiation is much lower than existing high-resolution imaging devices based on X-rays, the penetration of light is much lower, and, more importantly, the effect of scattering is much higher. Based on the mean free path of the photons, the physics of light propagation can be considered on different length scales which in turn gives rise to quite different forward and inverse problems. In this entry, we consider the recent development of methods for modeling and reconstruction in the presence of significant scattering, which is described by either transport or diffuse models. For more details, see [2, 4].

Measurements in Optical Tomography

Absorption of light in biological tissue is caused by chromophores of variable concentration such as hemoglobin in its oxygenated and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aronson, R.: Boundary conditions for diffusion of light. J. Opt. Soc. Am. A 12, 2532–2539 (1995)

    Article  Google Scholar 

  2. Arridge, S.R.: Optical tomography in medical imaging. Inverse Probl. 15(2), R41–R93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arridge, S.R., Lionheart, W.R.B.: Non-uniqueness in diffusion-based optical tomography. Opt. Lett. 23, 882–884 (1998)

    Article  Google Scholar 

  4. Arridge, S.R., Schotland, J.: Optical tomography: forward and inverse problems. Inverse Probl. 25(12), 123,010 (59pp.) (2009)

    Google Scholar 

  5. Bal, G.: Inverse transport theory and applications. Inverse Probl. 25(5), 053,001 (48pp.) (2009)

    Google Scholar 

  6. Case, M.C., Zweifel, P.F.: Linear Transport Theory. Addison-Wesley, New York (1967)

    MATH  Google Scholar 

  7. Corlu, A., Durduran, T., Choe, R., Schweiger, M., Hillman, E., Arridge, S.R., Yodh, A.G.: Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography. Opt. Lett. 28, 23 (2003)

    Article  Google Scholar 

  8. Corlu, A., Choe, R., Durduran, T., Lee, K., Schweiger, M., Arridge, S.R., Hillman, E.M.C., Yodh, A.G.: Diffuse optical tomography with spectral constraints and wavelength optimisation. Appl. Opt. 44(11), 2082–2093 (2005)

    Article  Google Scholar 

  9. Delpy, D.T., Cope, M., van der Zee, P., Arridge, S.R., Wray, S., Wyatt, J.: Estimation of optical pathlength through tissue from direct time of flight measurement. Phys. Med. Biol. 33, 1433–1442 (1988)

    Article  Google Scholar 

  10. Ishimaru, A.: Wave Propagation and Scattering in Random Media, vol. 1. Academic, New York (1978)

    MATH  Google Scholar 

  11. Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems. Springer, New York (2005)

    MATH  Google Scholar 

  12. Lakowicz, J.R., Berndt, K.: Frequency domain measurement of photon migration in tissues. Chem. Phys. Lett. 166(3), 246–252 (1990)

    Article  Google Scholar 

  13. Markel, V., O’Sullivan, J., Schotland, J.: Inverse problem in optical diffusion tomography. IV. Nonlinear inversion formulas. J. Opt. Soc. Am. A 20, 903–912 (2003)

    Article  Google Scholar 

  14. Ntziachristos, V., Ma, X., Chance, B.: Time-correlated single photon counting imager for simultaneous magnetic resonance and near-infrared mammography. Rev. Sci. Instrum. 69, 4221–4233 (1998)

    Article  Google Scholar 

  15. Ripoll, J., Nieto-Vesperinas, M.: Index mismatch for diffusive photon density waves both at flat and rough diffuse-diffuse interfaces. J. Opt. Soc. Am. A 16(8), 1947–1957 (1999)

    Article  Google Scholar 

  16. Schmidt, F.E.W., Fry, M.E., Hillman, E.M.C., Hebden, J.C., Delpy, D.T.: A 32-channel time-resolved instrument for medical optical tomography. Rev. Sci. Instrum. 71(1), 256–265 (2000)

    Article  Google Scholar 

  17. Schweiger, M., Arridge, S.R., Nissilä, I.: Gauss-Newton method for image reconstruction in diffuse optical tomography. Phys. Med. Biol. 50, 2365–2386 (2005)

    Article  Google Scholar 

  18. Tarvainen, T., Vauhkonen, M., Arridge, S.R.: Image reconstruction in optical tomography using the finite element solution of the frequency domain radiative transfer equation. J. Quant. Spect. Rad. Trans. 109, 2767–2278 (2008)

    Article  Google Scholar 

  19. Tarvainen, T., Kolehmainen, V., Kaipio, J., Arridge, S.R.: Corrections to linear methods for diffuse optical tomography using approximation error modelling. Biomed. Opt. Exp. 1(1), 209–222 (2010)

    Article  Google Scholar 

  20. Zacharopoulos, A.D., Svenmarker, P., Axelsson, J., Schweiger, M., Arridge, S.R., Andersson-Engels, S.: A matrix-free algorithm for multiple wavelength fluorescence tomography. Opt. Exp. 17, 3042–3051 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Arridge, S.R. (2015). Optical Tomography: Applications. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_43

Download citation

Publish with us

Policies and ethics