Skip to main content

Radial Basis Functions

  • Reference work entry
  • First Online:
Encyclopedia of Applied and Computational Mathematics
  • 344 Accesses

Mathematics Subject Classification

41A05; 41A15; 41A30; 65D05; 65D07; 65D15

Short Definition of Radial Basis Functions

Approximations using radial basis functions are multivariate kernel methods to approximate multivariable functions by finite linear combinations of translates of a single, univariate, quasi-stationary function (the “radial basis function”). Before translated, it is composed with the Euclidean norm so that it is rotationally invariant and may thus be used in any dimension. They are usually means to approximate functions which are only known at a finite number of points (“centres”), in order that numerous evaluations of the approximating function at other points can be made efficiently later on.

Applications include computer-aided geometric design, neural networks, and supervised or unsupervised learning, for instance by support vector machines [5]. The data dependence of translates opens the door to existence and uniqueness theorems for interpolating problems at...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 999.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beatson, R.K., Cherrie, J., Mouat, C.: Fast fitting of radial basis functions: methods based on preconditioned GMRES iteration. Adv. Comput. Math. 11, 253–270 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beatson, R.K., zu Castell, W., Schrödl, S.: Kernel-based methods for vector-valued data with correlated coefficients. SIAM J. Sci. Comput. 33, 1975–1995 (2011)

    Google Scholar 

  3. Buhmann, M.D.: A new class of radial basis functions with compact support. Math. Comput. 70, 307–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003). ISBN:978-0-521-10133-2

    Book  MATH  Google Scholar 

  5. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull. AMS 39, 1–49 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. de Boor, C., Ron, A.: On multivariate polynomial interpolation. Constr. Approx. 6, 287–302 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duchon, J.: Sur l’erreur d’interpolation des fonctions de plusieurs variables pas les Dm-splines. Rev. Francaise Automat. Informat. Rech. Oper. Anal. Numer. 10, 5–12 (1976)

    MathSciNet  Google Scholar 

  8. Dyn, N., Levin, D.: Iterative solution of systems originating from integral equations and surface interpolation. SIAM J. Numer. Anal. 20, 377–390 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dyn, N., Light, W.A., Cheney, E.W.: Interpolation by piecewise-linear radial basis functions. J. Approx. Theory 59, 202–223 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fasshauer, G.: Solving differential equations with radial basis functions: multilevel methods and smoothing. Adv. Comput. Math. 11, 139–159 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fasshauer, G.: Meshfree Approximation Methods with Matlab. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  12. Freeden, W., Gervens, T., Schneider, M.: Constructive Approximation on the Sphere. Clarendeon, Oxford (1998)

    MATH  Google Scholar 

  13. Johnson, M.: The L2-approximation order of surface spline interpolation. Math. Comput. 70, 719–737 (2000)

    Article  Google Scholar 

  14. Levesley, J., Light, W.A., Marletta, M.: Wavelets, Multilevel Methods and Elliptic PDEs. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  15. Madych, W., Nelson, S.: Bounds on multivariate polynomials and exponential error estimates for multiquadric interpolation. J. Approx. Theory 70, 94–114 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Micchelli, C.A.: Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2, 11–22 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Narcowich, F., Ward, J.: Norms of inverses and condition numbers of matrices associated with scattered data. J. Approx. Theory 64, 69–94 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Narcowich, F., Ward, J., Wendland, H.: Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Math. Comput. 74, 643–763 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Powell, M.J.D.: The uniform convergence of thin-plate spline interpolation in two dimensions. Numer. Math. 67, 107–128 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Powell, M.J.D.: A new iterative algorithm for thin plate spline interpolation in two dimensions. Ann. Numer. Math. 4, 519–527 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3, 251–264 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numer. 15, 543–639 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. AMS 44, 522–536 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  24. von Golitschek, M., Light, W.A.: Interpolation by polynomials and radial basis functions on spheres. Constr. Approx. 17, 1–18 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1999)

    MATH  Google Scholar 

  26. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  28. Wu, Z.M., Schaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Buhmann, M. (2015). Radial Basis Functions. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_306

Download citation

Publish with us

Policies and ethics