Encyclopedia of Applied and Computational Mathematics

2015 Edition
| Editors: Björn Engquist

Applications to Real Size Biological Systems

  • Christophe Chipot
Reference work entry
DOI: https://doi.org/10.1007/978-3-540-70529-1_273

Mathematics Subject Classification

65Y05; 68U20; 70F10; 81V55; 82-08; 82B05; 92-08

Synonyms

High-Performance Computer Simulations of Molecular Assemblies of Biological Interest

Short Definition

Arguably enough, structural biology and biophysics represent the greatest challenge for molecular dynamics, owing to the size of the biological objects of interest and the time scales spanned by processes of the cell machinery wherein they are involved. Here, molecular dynamics (MD) simulations are discussed from a biological perspective, emphasizing how the endeavor to model increasingly larger molecular assemblies over physiologically relevant times has shaped the field. This entry shows how the race to dilate the spatial and temporal scales has greatly benefitted from groundbreaking advances on the hardware, computational front, as well as on the algorithmic front. The current trends in the field, boosted by cutting-edge achievements, provide the basis for a prospective outlook into the...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgements

Image of the HIV virus capsid courtesy of Juan R. Perilla and Klaus J. Schulten, Theoretical and Computational Biophysics Group, University of Illinois Urbana-Champaign.

References

  1. 1.
    Alder, B.J., Wainwright, T.E.: Phase transition for a hard sphere systems. J. Chem. Phys. 27, 1208–1209 (1957)CrossRefGoogle Scholar
  2. 2.
    Anderson, J.A., Lorenz, C.D., Travesset, A.: General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys. 227(10), 5342–5359 (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bernèche, S., Roux, B.: Energetics of ion conduction through the K+ channel. Nature 414(6859), 73–77 (2001)CrossRefGoogle Scholar
  4. 4.
    Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E.: Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE SC 2006 Conference, Tampa (2006)Google Scholar
  5. 5.
    Buch, I., Giorgino, T., Fabritiis, G.D.: Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 108, 10184–10189 (2011)CrossRefGoogle Scholar
  6. 6.
    Chipot, C.: Molecular dynamics: observing matter in motion. In: Boisseau, P., Lahmani, M., Houdy, P. (eds.) Nanoscience: Nanobiotechnology and Nanobiology. Springer, Heidelberg/Dordrecht/London/New York (2009)Google Scholar
  7. 7.
    Chipot, C., Pohorille, A. (eds.): Free Energy Calculations: Theory and Applications in Chemistry and Biology. Springer, Berlin/Heidelberg/New York (2007)Google Scholar
  8. 8.
    Darve, E., Pohorille, A.: Calculating free energies using average force. J. Chem. Phys. 115, 9169–9183 (2001)CrossRefGoogle Scholar
  9. 9.
    Dehez, F., Pebay-Peyroula, E., Chipot, C.: Binding of adp in the mitochondrial adp/atp carrier is driven by an electrostatic funnel. J. Am. Chem. Soc. 130, 12725–12733 (2008)CrossRefGoogle Scholar
  10. 10.
    Dorairaj, S., Allen, T.W.: On the thermodynamic stability of a charged arginine side chain in a transmembrane helix. Proc. Natl. Acad. Sci. USA 104, 4943–4948 (2007)CrossRefGoogle Scholar
  11. 11.
    Dror, R.O., Jensen, M.Ø., Borhani, D.W., Shaw, D.E.: Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations. J. Gen. Physiol. 135, 555–562 (2010)CrossRefGoogle Scholar
  12. 12.
    Dror, R.O., Pan, A.C., Arlow, D.H., Borhani, D.W., Maragakis, P., Shan, Y., Xu, H., Shaw, D.E.: Pathway and mechanism of drug binding to g-protein-coupled receptors. Proc. Natl. Acad. Sci. USA 108, 13118–13123 (2011)CrossRefGoogle Scholar
  13. 13.
    Engle, R.D., Skeel, R.D., Drees, M.: Monitoring energy drift with shadow hamiltonians. J. Comput. Phys. 206, 432–452 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Freddolino, P.L., Harrison, C.B., Liu, Y., Schulten, K.: Challenges in protein folding simulations: timescale, representation, and analysis. Nat. Phys. 6, 751–758 (2010)CrossRefGoogle Scholar
  15. 15.
    Gumbart, J.C., Chipot, C., Schulten, K.: Effects of the protein translocon on the free energy of nascent-chain folding. J. Am. Chem. Soc. 133, 7602–7607 (2011)CrossRefGoogle Scholar
  16. 16.
    Gumbart, J.C., Chipot, C., Schulten, K.: Free-energy cost for translocon-assisted insertion of membrane proteins. Proc. Natl. Acad. Sci. USA 108, 3596–3601 (2011)CrossRefGoogle Scholar
  17. 17.
    Heller, H., Grubmüller, H., Schulten, K.: Molecular dynamics simulation on a parallel computer. Mol. Simul. 5, 133–165 (1990)CrossRefGoogle Scholar
  18. 18.
    Hénin, J., Chipot, C.: Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 121, 2904–2914 (2004)CrossRefGoogle Scholar
  19. 19.
    Hénin, J., Forin, G., Chipot, C., Klein, M.L.: Exploring multidimensional free energy landscapes using time-dependent biases on collective variables. J. Chem. Theor. Comput. 6, 35–47 (2010)CrossRefGoogle Scholar
  20. 20.
    Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: Gromacs 4: algorithms for highly effcient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4, 435–447 (2008)CrossRefGoogle Scholar
  21. 21.
    Jensen, M.Ø., Jogini, V., Borhani, D.W., Leffler, A.E., Dror, R.O., Shaw, D.E.: Mechanism of voltage gating in potassium channels. Science 336, 229–233 (2012)CrossRefGoogle Scholar
  22. 22.
    Lee, E.H., Hsin, J., Sotomayor, M., Comellas, G., Schulten, K.: Discovery through the computational microscope. Structure 17, 1295–1306 (2009)CrossRefGoogle Scholar
  23. 23.
    Lelièvre, T., Stoltz, G., Rousset, M.: Free Energy Computations: A Mathematical Perspective. Imperial College Press, London/Hackensack (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Lindorff-Larsen, K., Piana, S., Dror, R.O., Shaw, D.E.: How fast-folding proteins fold. Science 334, 517–520 (2011)CrossRefGoogle Scholar
  25. 25.
    McCammon, J.A., Gelin, B.R., Karplus, M.: Dynamics of folded proteins. Nature 267, 585–590 (1977)CrossRefGoogle Scholar
  26. 26.
    Mei, C., Sun, Y., Zheng, G., Bohm, E. J., Kale, L.V., Phillips, J.C., Harrison, C.: Enabling and scaling biomolecular simulations of 100 million atoms on petascale machines with a multicore-optimized message-driven runtime. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC ’11, (New York, NY, USA), pp. 61:1–61:11, ACM, 2011.Google Scholar
  27. 27.
    Nury, H., Poitevin, F., Renterghem, C.V., PChangeux, J., Corringer, P.J., Delarue, M., Baaden, M.: One-microsecond molecular dynamics simulation of channel gating in a nicotinic receptor homologue. Proc. Natl. Acad. Sci. USA 107, 6275–6280 (2010)CrossRefGoogle Scholar
  28. 28.
    Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R.D., Kalé, L., Schulten, K.: Scalable molecular dynamics with namd. J. Comput. Chem. 26, 1781–1802 (2005)CrossRefGoogle Scholar
  29. 29.
    Plimpton, S.: Fast parallel algorithms for short–range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)CrossRefzbMATHGoogle Scholar
  30. 30.
    Richards, W.G.: Virtual screening using grid computing: the screensaver project. Nat. Rev. Drug Discov. 1, 551–555 (2002)CrossRefGoogle Scholar
  31. 31.
    Shaw, D.E., Deneroff, M.M., Dror, R.O., Kuskin, J.S., Larson, R.H., Salmon, J.K., Young, C., Batson, B., Bowers, K.J., Chao, J.C., Eastwood, M.P., Gagliardo, J., Grossman, J.P., Ho, C.R., Ierardi, D.J., Kolossváry, I., Klepeis, J.L., Layman, T., McLeavey, C., Moraes, M.A., Mueller, R., Priest, E.C., Shan, Y., Spengler, J., Theobald, M., Towles, B., Wang, S.C.: Anton, a special-purpose machine for molecular dynamics simulation. SIGARCH Comput. Archit. News 35, 1–12 (2007)CrossRefGoogle Scholar
  32. 32.
    Shirts, M., Pande, V.: Screen savers of the world unite! Science 290, 1903–1904 (2000)CrossRefGoogle Scholar
  33. 33.
    Toukmaji, A.Y., Board, J.A., Jr.: Ewald summation techniques in perspective: a survey. Comput. Phys. Commun. 95, 73–92 (1996)CrossRefzbMATHGoogle Scholar
  34. 34.
    Trabuco, L.G., Villa, E., Mitra, K., Frank, J., Schulten, K.: Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. Structure 16, 673–683 (2008)CrossRefGoogle Scholar
  35. 35.
    van Gunsteren, W.F., Bakowies, D., Baron, R., Chandrasekhar, I., Christen, M., Daura, X., Gee, P., Geerke, D.P., Glättli, A., Hünenberger, P.H., Kastenholz, M.A., Oostenbrink, C., Schenk, M., Trzesniak, D., van der Vegt, N.F.A., Yu, H.B.: Biomolecular modeling: goals, problems, perspectives. Angew. Chem. Int. Ed. Engl. 45, 4064–4092 (2006)CrossRefGoogle Scholar
  36. 36.
    Verlet, L.: Computer “experiments” on classical fluids. i. thermodynamical properties of lennard–jones molecules. Phys. Rev. 159, 98–103 (1967)Google Scholar
  37. 37.
    Villa, E., Sengupta, J., Trabuco, L.G., LeBarron, J., Baxter, W.T., Shaikh, T.R., Grassucci, R.A., Nissen, P., Ehrenberg, M., Schulten, K., Frank, J.: Ribosome-induced changes in elongation factor tu conformation control gtp hydrolysis. Proc. Natl. Acad. Sci. USA 106, 1063–1068 (2009)CrossRefGoogle Scholar
  38. 38.
    Zhao, G., Perilla, J.R., Yufenyuy, E.L., Meng, X., Chen, B., Ning, J., Ahn, J., Gronenborn, A.M., Schulten, K., Aiken, C., Zhang, P.: Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497, 643–646 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Christophe Chipot
    • 1
    • 2
  1. 1.Laboratoire International Associé CNRS, UMR 7565Université de LorraineVandœuvre-lès-NancyFrance
  2. 2.Theoretical and Computational Biophysics GroupBeckman Institute for Advanced Science and Technology, University of Illinois at Urbana-ChampaignUrbana-ChampaignUSA