Encyclopedia of Applied and Computational Mathematics

2015 Edition
| Editors: Björn Engquist

Angiogenesis, Computational Modeling Perspective

Reference work entry
DOI: https://doi.org/10.1007/978-3-540-70529-1_162


Angiogenesis, the growth of capillaries from existing microvasculature, arises in dozens of physiological and pathological conditions. It is critical to wound healing and response to exercise. Angiogenesis also plays a pivotal role in the progression of cancer and tissue recovery after stroke. As such, angiogenesis has been the target of numerous therapies. However, so far, clinical trials and approved drugs targeting angiogenesis have performed below their potential [1, 2]. In part this is because drugs have been limited in their targets. Emerging angiogenic treatments are more likely to be multimodal, targeting multiple molecules or cells [3]. In addition, the need for tighter control over the degree, duration, and efficacy of new capillary growth by proper timing and dosing of therapies has been recognized. To harness the full therapeutic use of angiogenesis, a greater quantitative understanding of the process is needed. Modeling becomes a vital tool to capture the...

This is a preview of subscription content, log in to check access.


  1. 1.
    Cai, J., Han, S., Qing, R., Liao, D., Law, B., Boulton, M.E.: In pursuit of new anti-angiogenic therapies for cancer treatment. Front. Biosci. 16, 803–814 (2011)CrossRefGoogle Scholar
  2. 2.
    Ebos, J.M., Kerbel, R.S.: Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8, 316 (2011)CrossRefGoogle Scholar
  3. 3.
    Quesada, A.R., Medina, M.A., Alba, E.: Playing only one instrument may be not enough: limitations and future of the antiangiogenic treatment of cancer. Bioessays 29, 1159–1168 (2007)CrossRefGoogle Scholar
  4. 4.
    Deakin, A.S.: Model for initial vascular patterns in melanoma transplants. Growth 40, 191–201 (1976)Google Scholar
  5. 5.
    Liotta, L.A., Saidel, G.M., Kleinerman, J.: Diffusion model of tumor vascularization and growth. Bull. Math. Biol. 39, 117–128 (1977)CrossRefGoogle Scholar
  6. 6.
    Anderson, A.R., Chaplain, M.A.: Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chaplain, M.A., Anderson, A.R.: Mathematical modelling, simulation and prediction of tumour-induced angiogenesis. Invasion Metastas. 16, 222–234 (1996)Google Scholar
  8. 8.
    Sun, S., Wheeler, M.F., Obeyesekere, M., Patrick, C.W., Jr.: A deterministic model of growth factor-induced angiogenesis. Bull. Math. Biol. 67, 313–337 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Mac Gabhann, F., Popel, A.S.: Systems biology of vascular endothelial growth factors. Microcirculation 15, 715–738 (2008)CrossRefGoogle Scholar
  10. 10.
    Mac Gabhann, F., Qutub, A.A., Annex, B.H., Popel, A.S.: Systems biology of pro-angiogenic therapies targeting the VEGF system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 694–707 (2010)CrossRefGoogle Scholar
  11. 11.
    Filion, R.J., Popel, A.S.: A reaction-diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann. Biomed. Eng. 32, 645–663 (2004)CrossRefGoogle Scholar
  12. 12.
    Karagiannis, E.D., Popel, A.S.: A theoretical model of type I collagen proteolysis by matrix metalloproteinase (MMP) 2 and membrane type 1 MMP in the presence of tissue inhibitor of metalloproteinase 2. J. Biol. Chem. 279, 39105–39114 (2004)CrossRefGoogle Scholar
  13. 13.
    Nathan, J.C., Qutub, A.A.: Patient-specific modeling of hypoxic response and microvasculature dynamics. In: Kerckhoffs, R.C. (ed.) Patient-Specific Modeling of the Cardiovascular System, pp. 183–201. Springer, New York (2010)CrossRefGoogle Scholar
  14. 14.
    Peirce, S.M.: Computational and mathematical modeling of angiogenesis. Microcirculation 15, 739–751 (2008)CrossRefGoogle Scholar
  15. 15.
    Qutub, A.A., Popel, A.S.: Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting. BMC Syst. Biol. 3, 13 (2009)CrossRefGoogle Scholar
  16. 16.
    Das, A., Lauffenburger, D., Asada, H., Kamm, R.D.: A hybrid continuum-discrete modelling approach to predict and control angiogenesis: analysis of combinatorial growth factor and matrix effects on vessel-sprouting morphology. Philos. Transact. A Math. Phys. Eng. Sci. 368, 2937–2960 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Rivera, C.G., Bader, J.S., Popel, A.S.: Angiogenesis-associated crosstalk between collagens, CXC chemokines, and thrombospondin domain-containing proteins. Ann. Biomed. Eng. 39, 2213–2222 (2011)CrossRefGoogle Scholar
  18. 18.
    Karagiannis, E.D., Popel, A.S.: A systematic methodology for proteome-wide identification of peptides inhibiting the proliferation and migration of endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 105, 13775–13780 (2008)CrossRefGoogle Scholar
  19. 19.
    Kharait, S., Hautaniemi, S., Wu, S., Iwabu, A., Lauffenburger, D.A., Wells, A.: Decision tree modeling predicts effects of inhibiting contractility signaling on cell motility. BMC Syst. Biol. 1, 9 (2007)CrossRefGoogle Scholar
  20. 20.
    Deisboeck, T.S., Wang, Z., Macklin, P., Cristini, V.: Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13, 127–155 (2011)CrossRefGoogle Scholar
  21. 21.
    Qutub, A., Gabhann, F., Karagiannis, E., Vempati, P., Popel, A.: Multiscale models of angiogenesis. IEEE Eng. Med. Biol. Mag. 28, 14–31 (2009)CrossRefGoogle Scholar
  22. 22.
    Folkman, J., Merler, E., Abernathy, C., Williams, G.: Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med. 133, 275–288 (1971)CrossRefGoogle Scholar
  23. 23.
    Carey, K.A., Farnfield, M.M., Tarquinio, S.D., Cameron-Smith, D.: Impaired expression of notch signaling genes in aged human skeletal muscle. J. Gerontol. A Biol. Sci. Med. Sci. 62, 9–17 (2007)CrossRefGoogle Scholar
  24. 24.
    Baish, J.W., Stylianopoulos, T., Lanning, R.M., Kamoun, W.S., Fukumura, D., Munn, L.L., Jain, R.K.: Scaling rules for diffusive drug delivery in tumor and normal tissues. Proc. Natl. Acad. Sci. U.S.A. 108, 1799–1803 (2011)CrossRefGoogle Scholar
  25. 25.
    Seaman, M.E., Peirce, S.M., Kelly, K.: Rapid analysis of vessel elements (RAVE): a tool for studying physiologic, pathologic and tumor angiogenesis. PLoS One 6, e20807 (2011)CrossRefGoogle Scholar
  26. 26.
    Baish, J.W., Gazit, Y., Berk, D.A., Nozue, M., Baxter, L.T., Jain, R.K.: Role of tumor vascular architecture in nutrient and drug delivery: an invasion percolation-based network model. Microvasc. Res. 51, 327–346 (1996)CrossRefGoogle Scholar
  27. 27.
    Di Ieva, A., Grizzi, F., Ceva-Grimaldi, G., Aimar, E., Serra, S., Pisano, P., Lorenzetti, M., Tancioni, F., Gaetani, P., Crotti, F., Tschabitscher, M., Matula, C., Rodriguez, Y.B.R.: The microvascular network of the pituitary gland: a model for the application of fractal geometry to the analysis of angioarchitecture and angiogenesis of brain tumors. J. Neurosurg. Sci. 54, 49–54 (2010)Google Scholar
  28. 28.
    Risser, L., Plouraboue, F., Steyer, A., Cloetens, P., Le Duc, G., Fonta, C.: From homogeneous to fractal normal and tumorous microvascular networks in the brain. J. Cereb. Blood Flow Metab. 27, 293–303 (2007)CrossRefGoogle Scholar
  29. 29.
    Grizzi, F., Russo, C., Colombo, P., Franceschini, B., Frezza, E.E., Cobos, E., Chiriva-Internati, M.: Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 5, 14 (2005)CrossRefGoogle Scholar
  30. 30.
    Amyot, F., Camphausen, K., Siavosh, A., Sackett, D., Gandjbakhche, A.: Quantitative method to study the network formation of endothelial cells in response to tumor angiogenic factors. IEE Proc. Syst. Biol. 152, 61–66 (2005)CrossRefGoogle Scholar
  31. 31.
    Ferrara, N.: Vascular endothelial growth factor. Arterioscler. Thromb. Vasc. Biol. 29, 789–791 (2009)CrossRefGoogle Scholar
  32. 32.
    Senger, D.R., Galli, S.J., Dvorak, A.M., Perruzzi, C.A., Harvey, V.S., Dvorak, H.F.: Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985 (1983)CrossRefGoogle Scholar
  33. 33.
    Filion, R.J., Popel, A.S.: Intracoronary administration of FGF-2: a computational model of myocardial deposition and retention. Am. J. Physiol. Heart Circ. Physiol. 288, H263–H279 (2005)CrossRefGoogle Scholar
  34. 34.
    Stokes, C.L., Lauffenburger, D.A.: Analysis of the roles of microvessel endothelial cell random motility and chemotaxis in angiogenesis. J. Theor. Biol. 152, 377–403 (1991)CrossRefGoogle Scholar
  35. 35.
    Bauer, A.L., Jackson, T.L., Jiang, Y., Rohlf, T.: Receptor cross-talk in angiogenesis: mapping environmental cues to cell phenotype using a stochastic, Boolean signaling network model. J. Theor. Biol. 264, 838–846 (2010)CrossRefGoogle Scholar
  36. 36.
    Mac Gabhann, F., Popel, A.S.: Model of competitive binding of vascular endothelial growth factor and placental growth factor to VEGF receptors on endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 286, H153–H164 (2004)CrossRefGoogle Scholar
  37. 37.
    Folkman, J.: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995)CrossRefGoogle Scholar
  38. 38.
    Cao, Y., Linden, P., Shima, D., Browne, F., Folkman, J.: In vivo angiogenic activity and hypoxia induction of heterodimers of placenta growth factor/vascular endothelial growth factor. J. Clin. Invest. 98, 2507–2511 (1996)CrossRefGoogle Scholar
  39. 39.
    Mac Gabhann, F., Popel, A.S.: Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 292, H459–H474 (2007)CrossRefGoogle Scholar
  40. 40.
    Ji, J.W., Mac Gabhann, F., Popel, A.S.: Skeletal muscle VEGF gradients in peripheral arterial disease: simulations of rest and exercise. Am. J. Physiol. Heart Circ. Physiol. 293, H3740–H3749 (2007)CrossRefGoogle Scholar
  41. 41.
    Stefanini, M.O., Wu, F.T., Mac Gabhann, F., Popel, A.S.: A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst. Biol. 2, 77 (2008)CrossRefGoogle Scholar
  42. 42.
    Karagiannis, E.D., Popel, A.S.: Distinct modes of collagen type I proteolysis by matrix metalloproteinase (MMP) 2 and membrane type I MMP during the migration of a tip endothelial cell: insights from a computational model. J. Theor. Biol. 238, 124–145 (2006)CrossRefGoogle Scholar
  43. 43.
    Wang, G.L., Semenza, G.L.: General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. U.S.A. 90, 4304–4308 (1993)CrossRefGoogle Scholar
  44. 44.
    Semenza, G.L.: Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. Biochem. J. 405, 1–9 (2007)CrossRefGoogle Scholar
  45. 45.
    Qutub, A.A., Popel, A.S.: A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1 alpha. J. Cell. Sci. 119, 3467–3480 (2006)CrossRefGoogle Scholar
  46. 46.
    Kohn, K.W., Riss, J., Aprelikova, O., Weinstein, J.N., Pommier, Y., Barrett, J.C.: Properties of switch-like bioregulatory networks studied by simulation of the hypoxia response control system. Mol. Biol. Cell. 15, 3042–3052 (2004)CrossRefGoogle Scholar
  47. 47.
    Semenza, G.L.: HIF-1: using two hands to flip the angiogenic switch. Cancer Metastas. Rev. 19, 59–65 (2000)CrossRefGoogle Scholar
  48. 48.
    Dayan, F., Monticelli, M., Pouyssegur, J., Pecou, E.: Gene regulation in response to graded hypoxia: the non-redundant roles of the oxygen sensors PHD and FIH in the HIF pathway. J. Theor. Biol. 259, 304–316 (2009)CrossRefGoogle Scholar
  49. 49.
    Dayan, F., Roux, D., Brahimi-Horn, M.C., Pouyssegur, J., Mazure, N.M.: The oxygen sensor factor-inhibiting hypoxia-inducible factor-1 controls expression of distinct genes through the bifunctional transcriptional character of hypoxia-inducible factor-1alpha. Cancer Res. 66, 3688–3698 (2006)CrossRefGoogle Scholar
  50. 50.
    Yucel, M.A., Kurnaz, I.A.: An in silico model for HIF-alpha regulation and hypoxia response in tumor cells. Biotechnol. Bioeng. 97, 588–600 (2007)CrossRefGoogle Scholar
  51. 51.
    Qutub, A.A., Popel, A.S.: Reactive oxygen species regulate hypoxia-inducible factor HIF1alpha differentially in cancer and ischemia. Mol. Cell. Biol. 28, 5106–5119 (2008)CrossRefGoogle Scholar
  52. 52.
    Stokes, C.L., Lauffenburger, D.A., Williams, S.K.: Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell. Sci. 99(Pt 2), 419–430 (1991)Google Scholar
  53. 53.
    Maes, P.: Modeling adaptive autonomous agents. Artif. Life 135–162 (1993/1994)Google Scholar
  54. 54.
    Peirce, S.M., Van Gieson, E.J., Skalak, T.C.: Multicellular simulation predicts microvascular patterning and in silico tissue assembly. Faseb J. 18, 731–733 (2004)Google Scholar
  55. 55.
    Qutub, A.A., Hunt, C.A.: Glucose transport to the brain: a systems model. Brain Res. Brain Res. Rev. 49, 595–617 (2005)CrossRefGoogle Scholar
  56. 56.
    Liu, Y., Hunt, C.A.: Mechanistic study of the cellular interplay of transport and metabolism using the synthetic modeling method. Pharm. Res. 23, 493–505 (2006)CrossRefGoogle Scholar
  57. 57.
    An, G., Mi, Q., Dutta-Moscato, J., Vodovotz, Y.: Agent-based models in translational systems biology. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 159–171 (2009)CrossRefGoogle Scholar
  58. 58.
    Tang, J., Hunt, C.A.: Identifying the rules of engagement enabling leukocyte rolling, activation, and adhesion. PLoS Comput. Biol. 6, e1000681 (2010)CrossRefGoogle Scholar
  59. 59.
    Mansury, Y., Diggory, M., Deisboeck, T.S.: Evolutionary game theory in an agent-based brain tumor model: exploring the ‘Genotype-Phenotype’ link. J. Theor. Biol. 238, 146–156 (2006)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Enderling, H., Anderson, A.R., Chaplain, M.A., Beheshti, A., Hlatky, L., Hahnfeldt, P.: Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res. 69, 8814–8821 (2009)CrossRefGoogle Scholar
  61. 61.
    Bentley, K., Mariggi, G., Gerhardt, H., Bates, P.A.: Tipping the balance: robustness of tip cell selection, migration and fusion in angiogenesis. PLoS Comput. Biol. 5, e1000549 (2009)CrossRefGoogle Scholar
  62. 62.
    Liu, G., Qutub, A.A., Vempati, P., Mac Gabhann, F., Popel, A.S.: Module-based multiscale simulation of angiogenesis in skeletal muscle. Theor. Biol. Med. Model. 8, 6 (2011)CrossRefGoogle Scholar
  63. 63.
    Bailey, A.M., Lawrence, M.B., Shang, H., Katz, A.J., Peirce, S.M.: Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin. PLoS Comput. Biol. 5, e1000294 (2009)CrossRefGoogle Scholar
  64. 64.
    Jakobsson, L., Franco, C.A., Bentley, K., Collins, R.T., Ponsioen, B., Aspalter, I.M., Rosewell, I., Busse, M., Thurston, G., Medvinsky, A., Schulte-Merker, S., Gerhardt, H.: Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat. Cell. Biol. 12, 943–953 (2010)CrossRefGoogle Scholar
  65. 65.
    Sedivy, R., Thurner, S., Budinsky, A.C., Kostler, W.J., Zielinski, C.C.: Short-term rhythmic proliferation of human breast cancer cell lines: surface effects and fractal growth patterns. J. Pathol. 197, 163–169 (2002)CrossRefGoogle Scholar
  66. 66.
    Lee, Y., Kouvroukoglou, S., McIntire, L.V., Zygourakis, K.: A cellular automaton model for the proliferation of migrating contact-inhibited cells. Biophys. J. 69, 1284–1298 (1995)CrossRefGoogle Scholar
  67. 67.
    Merks, R.M., Perryn, E.D., Shirinifard, A., Glazier, J.A.: Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol. 4, e1000163 (2008)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Bauer, A.L., Jackson, T.L., Jiang, Y.: Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS Comput. Biol. 5, e1000445 (2009)MathSciNetCrossRefGoogle Scholar
  69. 69.
    Graner, F., Glazier, J.A.: Simulation of biological cell sorting using a two-dimensional extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992)CrossRefGoogle Scholar
  70. 70.
    Shirinifard, A., Gens, J.S., Zaitlen, B.L., Poplawski, N.J., Swat, M., Glazier, J.A.: 3D multi-cell simulation of tumor growth and angiogenesis. PLoS One 4, e7190 (2009)CrossRefGoogle Scholar
  71. 71.
    Long, B., Qutub, A.A.: Promoting behavioral rules to agents in modeling angiogenesis. In: Annual Conference on Biomedical Engineering Society (BMES), Austin (2010)Google Scholar
  72. 72.
    Kornblau, S.M., Qiu, Y.H., Zhang, N., Singh, N., Fader, S., Ferrajoli, A., York, H., Qutub, A.A., Coombes, K.R., Watson, D.K.: Abnormal expression of friend leukemia virus integration 1 (Fli1) protein is an adverse prognostic factor in acute myeloid leukemia. Blood 118, 5604–5612 (2011)CrossRefGoogle Scholar
  73. 73.
    Frieboes, H.B., Chaplain, M.A., Thompson, A.M., Bearer, E.L., Lowengrub, J.S., Cristini, V.: Physical oncology: a bench-to-bedside quantitative and predictive approach. Cancer Res. 71, 298–302 (2011)CrossRefGoogle Scholar
  74. 74.
    Southern, J., Pitt-Francis, J., Whiteley, J., Stokeley, D., Kobashi, H., Nobes, R., Kadooka, Y., Gavaghan, D.: Multi-scale computational modelling in biology and physiology. Prog. Biophys. Mol. Biol. 96, 60–89 (2008)CrossRefGoogle Scholar
  75. 75.
    Ropella, G.E., Hunt, C.A.: Cloud computing and validation of expandable in silico livers. BMC Syst. Biol. 4, 168 (2010)CrossRefGoogle Scholar
  76. 76.
    Zhang, L., Wang, Z., Sagotsky, J.A., Deisboeck, T.S.: Multiscale agent-based cancer modeling. J. Math. Biol. 58, 545–559 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    Bailey, A.M., Thorne, B.C., Peirce, S.M.: Multi-cell agent-based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann. Biomed. Eng. 35, 916–936 (2007)CrossRefGoogle Scholar
  78. 78.
    Stefanini, M.O., Qutub, A.A., Gabhann, F.M., Popel, A.S.: Computational models of VEGF-associated angiogenic processes in cancer. Math. Med. Biol. 29, 85–94 (2012)CrossRefzbMATHGoogle Scholar
  79. 79.
    Zheng, X., Wise, S.M., Cristini, V.: Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method. Bull. Math. Biol. 67, 211–259 (2005)MathSciNetCrossRefGoogle Scholar
  80. 80.
    Alarcon, T., Byrne, H.M., Maini, P.K.: A cellular automaton model for tumour growth in inhomogeneous environment. J. Theor. Biol. 225, 257–274 (2003)MathSciNetCrossRefGoogle Scholar
  81. 81.
    Bearer, E.L., Lowengrub, J.S., Frieboes, H.B., Chuang, Y.L., Jin, F., Wise, S.M., Ferrari, M., Agus, D.B., Cristini, V.: Multiparameter computational modeling of tumor invasion. Cancer Res. 69, 4493–4501 (2009)CrossRefGoogle Scholar
  82. 82.
    Frieboes, H.B., Jin, F., Chuang, Y.L., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis. J. Theor. Biol. 264, 1254–1278 (2010)MathSciNetCrossRefGoogle Scholar
  83. 83.
    Lowengrub, J.S., Frieboes, H.B., Jin, F., Chuang, Y.L., Li, X., Macklin, P., Wise, S.M., Cristini, V.: Nonlinear modelling of cancer: bridging the gap between cells and tumours. Nonlinearity 23, R1–R9 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    Stoll, B.R., Migliorini, C., Kadambi, A., Munn, L.L., Jain, R.K.: A mathematical model of the contribution of endothelial progenitor cells to angiogenesis in tumors: implications for antiangiogenic therapy. Blood 102, 2555–2561 (2003)CrossRefGoogle Scholar
  85. 85.
    Jain, R.K., Tong, R.T., Munn, L.L.: Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 67, 2729–2735 (2007)CrossRefGoogle Scholar
  86. 86.
    Bauer, A.L., Jackson, T.L., Jiang, Y.: A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J. 92, 3105–3121 (2007)CrossRefGoogle Scholar
  87. 87.
    Mac Gabhann, F., Popel, A.S.: Targeting neuropilin-1 to inhibit VEGF signaling in cancer: comparison of therapeutic approaches. PLoS Comput. Biol. 2, e180 (2006)CrossRefGoogle Scholar
  88. 88.
    Jain, H.V., Nor, J.E., Jackson, T.L.: Modeling the VEGF-Bcl-2-CXCL8 pathway in intratumoral agiogenesis. Bull. Math. Biol. 70, 89–117 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Zhang, L., Athale, C.A., Deisboeck, T.S.: Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J. Theor. Biol. 244, 96–107 (2007)MathSciNetCrossRefGoogle Scholar
  90. 90.
    Deisboeck, T.S., Zhang, L., Yoon, J., Costa, J.: In silico cancer modeling: is it ready for prime time? Nat. Clin. Pract. Oncol. 6, 34–42 (2009)CrossRefGoogle Scholar
  91. 91.
    Mansury, Y., Kimura, M., Lobo, J., Deisboeck, T.S.: Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J. Theor. Biol. 219, 343–370 (2002)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Stefanini, M.O., Wu, F.T., Mac Gabhann, F., Popel, A.S.: Increase of plasma VEGF after intravenous administration of bevacizumab is predicted by a pharmacokinetic model. Cancer Res. 70, 9886–9894 (2010)CrossRefGoogle Scholar
  93. 93.
    Martin, D.N., Boersma, B.J., Yi, M., Reimers, M., Howe, T.M., Yfantis, H.G., Tsai, Y.C., Williams, E.H., Lee, D.H., Stephens, R.M., Weissman, A.M., Ambs, S.: Differences in the tumor microenvironment between African-American and European-American breast cancer patients. PLoS One 4, e4531 (2009)CrossRefGoogle Scholar
  94. 94.
    Wang, Z., Bordas, V., Sagotsky, J., Deisboeck, T.S.: Identifying therapeutic targets in a combined EGFR-TGF{beta}R signalling cascade using a multiscale agent-based cancer model. Math. Med. Biol. 29, 95–108 (2012)CrossRefzbMATHGoogle Scholar
  95. 95.
    Rekhi, R., Long, B., Arevalos, C.A., Jiwon, J., Qutub, A.: Modeling the angiogenic response of the neurovasculature in ischemia. In: Annual Conference on Biomedical Engineering Society (BMES), Austin (2010)Google Scholar
  96. 96.
    Waters, S.L., Alastruey, J., Beard, D.A., Bovendeerd, P.H., Davies, P.F., Jayaraman, G., Jensen, O.E., Lee, J., Parker, K.H., Popel, A.S., Secomb, T.W., Siebes, M., Sherwin, S.J., Shipley, R.J., Smith, N.P., van de Vosse, F.N.: Theoretical models for coronary vascular biomechanics: progress & challenges. Prog. Biophys. Mol. Biol. 104, 49–76 (2010)CrossRefGoogle Scholar
  97. 97.
    Wu, F.T., Stefanini, M.O., Mac Gabhann, F., Kontos, C.D., Annex, B.H., Popel, A.S.: VEGF and soluble VEGF receptor-1 (sFlt-1) distributions in peripheral arterial disease: an in silico model. Am. J. Physiol. Heart Circ. Physiol. 298, H2174–H2191 (2010)CrossRefGoogle Scholar
  98. 98.
    Ji, J.W., Tsoukias, N.M., Goldman, D., Popel, A.S.: A computational model of oxygen transport in skeletal muscle for sprouting and splitting modes of angiogenesis. J. Theor. Biol. 241, 94–108 (2006)MathSciNetCrossRefGoogle Scholar
  99. 99.
    Mac Gabhann, F., Demetriades, A.M., Deering, T., Packer, J.D., Shah, S.M., Duh, E., Campochiaro, P.A., Popel, A.S.: Protein transport to choroid and retina following periocular injection: theoretical and experimental study. Ann. Biomed. Eng. 35, 615–630 (2007)CrossRefGoogle Scholar
  100. 100.
    Nguyen, L.K., Cavadas, M.A., Scholz, C.C., Fitzpatrick, S.F., Bruning, U., Cummins, E.P., Tambuwala, M.M., Manresa, M.C., Kholodenko, B.N., Taylor, C.T., Cheong, A.: A dynamic model of the hypoxia-inducible factor 1α (HIF-1α) network. J. Cell. Sci. 126, 1454–1463 (2013)CrossRefGoogle Scholar
  101. 101.
    Logsdon, E.A., Finley, S.D., Popel, A.S., Mac Gabhann, F.: A systems biology view of blood vessel growth and remodelling. J. Cell. Mol. Med. 18, 1491–1508 (2014)CrossRefGoogle Scholar
  102. 102.
    Clegg, L.E., Mac Gabhann, F.: Systems biology of the microvasculature. Integr. Biol. (Camb.) (2015) (Epub ahead of print)Google Scholar
  103. 103.
    Chu, L.H., Rivera, C.G., Popel, A.S., Bader, J.S.: Constructing the angiome: a global angiogenesis protein interaction network. Physiol. Genomics 44, 915–924 (2012)CrossRefGoogle Scholar
  104. 104.
    Finley, S.D., Chu, L.H., Popel, A.S.: Computational systems biology approaches to anti-angiogenic cancer therapeutics. Drug Discov. Today 20, 187–197 (2015)CrossRefGoogle Scholar
  105. 105.
    Finley, S.D., Popel, A.S.: Effect of tumor microenvironment on tumor VEGF during anti-VEGF treatment: systems biology predictions. J. Natl. Cancer Inst. 105, 802–811 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of BioengineeringRice UniversityHoustonUSA
  2. 2.Systems Biology Laboratory, Department of Biomedical Engineering, School of MedicineThe Johns Hopkins UniversityBaltimoreUSA