# Dense Output

• 185 Accesses

## Introduction

We solve numerically an initial value problem, IVP, for a first-order system of ordinary differential equations, ODEs. That is, we approximate the solution y(t) of

$$\displaystyle{y^{{\prime}}(t) = f(t,y(t)),\qquad t_{ 0} \leq t \leq t_{F}}$$

that has given initial value y(t0). In the early days this was done with pencil and paper or mechanical calculator. A numerical solution then was a table of values, $$y_{j} \approx y(t_{j})$$, for mesh points t j that were generally at an equal spacing or step size of h. On reaching t n where we have an approximation y n , we take a step of size h to form an approximation at $$t_{n+1} = t_{n} + h$$. This was commonly done with previously computed approximations and an Adams-Bashforth formula like

$$\displaystyle{ y_{n+1} = y_{n} + h\left [\dfrac{23} {12}f_{n} -\dfrac{16} {12}f_{n-1} + \dfrac{5} {12}f_{n-2}\right ]. }$$
(1)

Here $$f_{j} = f(t_{j},y_{j}) \approx f(t_{j},y(t_{j})) = y^{{\prime}}(t_{j})$$. The number of times the...

This is a preview of subscription content, access via your institution.

Chapter
USD   29.95
Price excludes VAT (USA)
• DOI: 10.1007/978-3-540-70529-1_107
• Chapter length: 7 pages
• Readable on all devices
• Own it forever
• Exclusive offer for individuals only
• Tax calculation will be finalised during checkout
eBook
USD   999.00
Price excludes VAT (USA)
• ISBN: 978-3-540-70529-1
• Readable on all devices
• Own it forever
• Exclusive offer for individuals only
• Tax calculation will be finalised during checkout
Softcover Book
USD   1,099.99
Price excludes VAT (USA)
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)

## References

1. Ascher, U.M., Christiansen, J., Russell, R.D.: Collocation software for boundary value ODEs. ACM Trans. Math. Softw. 7, 209–222 (1981)

2. Dormand, J.R., Prince, P.J.: A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

3. Enright, W.H., Jackson, K.R., Nørsett, S.P., Thomson, P.G.: Interpolants for Runge-Kutta formulas. ACM Trans. Math. Softw. 12, 193–218 (1986)

4. Fehlberg, E.: Classical fifth-, sixth-, seventh-, and eighth order Runge-Kutta formulas with step size control. Technical report, 287, NASA (1968)

5. Fehlberg, E.: Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme. Computing 6, 61–71 (1970)

6. Gladwell, I.: Initial value routines in the NAG library. ACM Trans. Math. Softw. 5, 386–400 (1979)

7. Hairer, E., Ostermann, A.: Dense output for extrapolation methods. Numer. Math. 58, 419–439 (1990)

8. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems. Springer Series in Computational Mathematics, vol. 18, 2nd edn. Springer, Berlin (1993)

9. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York (1962)

10. Horn, M.K.: Fourth and fifth-order scaled Runge-Kutta algorithms for treating dense output. SIAM J. Numer. Anal. 20, 558–568 (1983)

11. Jay, L.O.: Dense output for extrapolation based on the semi-implicit midpoint rule. Z. Angew. Math. Mech. 73, 325–329 (1993)

12. Shampine, L.F.: Interpolation for Runge-Kutta methods. SIAM J. Numer. Anal. 22, 1014–1027 (1985)

13. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE suite. SIAM J. Sci. Comput. 18, 1–22 (1997)

14. Shampine, L.F., Baca, L.S., Bauer, H.J.: Output in extrapolation codes. Comput. Math. Appl. 9, 245–255 (1983)

15. Verner, J.: Jim Verner’s refuge for Runge-Kutta pairs. http://people.math.sfu.ca/~jverner/ (2011)

Authors

## Rights and permissions

Reprints and Permissions

© 2015 Springer-Verlag Berlin Heidelberg

### Cite this entry

Shampine, L.F., Jay, L.O. (2015). Dense Output. In: Engquist, B. (eds) Encyclopedia of Applied and Computational Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70529-1_107