Skip to main content

Abstract

Stereotaxic neurosurgery has always been somewhat dependent upon new technologies. The ability to safely navigate to and alter the physiology of deep brain structures that are inaccessible by open surgery invariably benefits from technologies which combine maximal information regarding functional neuroanatomy with advanced three dimensional navigational tools. From the development of the first modern stereotaxic frame through incorporation of detailed anatomical targeting with CT and MRI, stereotaxic neurosurgery has benefited from early adoption of new technologies. In recent years, this has resulted in widespread use of computer-based image analysis and navigational guidance systems among even more seasoned practitioners who had long relied on homegrown methods. Although several commercial packages are currently available, and an academic manuscript is not intended to promote a particular vendor, nonetheless detailed evaluations of the major systems can provide valuable information to investigators who are considering entering this field as well as to those experienced surgeons who may be less familiar with the details of each system. Here we will review the history and current applications of the technology offered by one of the popular current vendors, BrainLab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazarnovskaya MI, Borodkin SM, Shabalov VA, Krivosheina VY, Golanov AV. 3-D computer model of subcortical structures of human brain. Comput Biol Med 1991;21(6):451–7.

    Article  PubMed  CAS  Google Scholar 

  2. Housepian EM. Stereotactic surgery: the early years. Neurosurgery 2004;55(5):1210–4.

    Article  PubMed  Google Scholar 

  3. Slaughter DG, Nashold BS, Jr. Intracranial measurements for stereotactic surgery. Confin Neurol 1970;32(2):250–4.

    Article  PubMed  CAS  Google Scholar 

  4. Sandberg DI, Bilsky MH, Souweidane MM, Bzdil J, Gutin PH. Ommaya reservoirs for the treatment of leptomeningeal metastases. Neurosurgery 2000;47(1):49–54;

    Article  PubMed  CAS  Google Scholar 

  5. Breit S, LeBas JF, Koudsie A, et al. Pretargeting for the implantation of stimulation electrodes into the subthalamic nucleus: a comparative study of magnetic resonance imaging and ventriculography. Neurosurgery 2006;58 Suppl 1:ONS83–95.

    Article  PubMed  Google Scholar 

  6. Slavin KV, Thulborn KR, Wess C, Nersesyan H. Direct visualization of the human subthalamic nucleus with 3T MR imaging. Am J Neuroradiol 2006;27(1):80–4.

    PubMed  CAS  Google Scholar 

  7. Schlaier J, Schoedel P, Lange M, et al. Reliability of atlas-derived coordinates in deep brain stimulation. Acta Neurochir (Wien) 2005;147(11):1175–80; discussion 1180.

    Article  CAS  Google Scholar 

  8. Gumprecht HK, Widenka DC, Lumenta CB. BrainLab vectorvision neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery 1999;44(1):97–104; discussion 104–105.

    Article  PubMed  CAS  Google Scholar 

  9. Mascott CR. In vivo accuracy of image guidance performed using optical tracking and optimized registration. J Neurosurg 2006;105(4):561–7.

    Article  PubMed  Google Scholar 

  10. Berman JI, Berger MS, Chung SW, Nagarajan SS, Henry RG. Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg 2007;107(3):488–94.

    Article  PubMed  Google Scholar 

  11. Bello L, Gambini A, Castellano A, et al. Motor and language DTI fiber tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 2008;39(1):369–82.

    Article  PubMed  Google Scholar 

  12. Schlaier JR, Warnat J, Dorenbeck U, Proescholdt M, Schebesch KM, Brawanski A. Image fusion of MR images and real-time ultrasonography: evaluation of fusion accuracy combining two commercial instruments, a neuronavigation system and a ultrasound system. Acta Neurochir (Wien) 2004;146(3):271–6; discussion 276–277.

    Article  CAS  Google Scholar 

  13. Eljamel MS, Tulley M, Spillane K. A simple stereotactic method for frameless deep brain stimulation. Stereotact Funct Neurosurg 2007;85(1):6–10.

    Article  PubMed  Google Scholar 

  14. Pan HC, Wang YC, Lee SD, Chen NF, Chang CS, Yang DY. A modified method to perform the frameless biopsy. J Clin Neurosci 2003;10(5):602–5.

    Article  PubMed  Google Scholar 

  15. Holloway KL, Gaede SE, Starr PA, Rosenow JM, Ramakrishnan V, Henderson JM. Frameless stereotaxy using bone fiducial markers for deep brain stimulation. J Neurosurg 2005;103(3):404–13.

    Article  PubMed  Google Scholar 

  16. Mehta AD, Labar D, Dean A, et al. Frameless stereotactic placement of depth electrodes in epilepsy surgery. J Neurosurg 2005;102(6):1040–5.

    Article  PubMed  Google Scholar 

  17. Murphy MA, O’Brien TJ, Cook MJ. Insertion of depth electrodes with or without subdural grids using frameless stereotactic guidance systems–technique and outcome. Br J Neurosurg 2002;16(2):119–25.

    Article  PubMed  CAS  Google Scholar 

  18. Maciunas RJ, Dean D, Lewin J, Selman WR, Ratcheson RA. Integration of neurosurgical image guidance and an intraoperative magnetic resonance scanner. The University Hospitals of Cleveland experience. Stereotact Funct Neurosurg 2003;80(1–4):136–9.

    Article  PubMed  Google Scholar 

  19. Samdani A, Jallo GI. Intraoperative MRI: technology, systems, and application to pediatric brain tumors. Surg Technol Int 2007;16:236–43.

    PubMed  Google Scholar 

  20. Yrjana SK, Tuominen J, Koivukangas J. Intraoperative magnetic resonance imaging in neurosurgery. Acta Radiol 2007;48(5):540–9.

    Article  PubMed  CAS  Google Scholar 

  21. Jones J, Ruge J. Intraoperative magnetic resonance imaging in pituitary macroadenoma surgery: an assessment of visual outcome. Neurosurg Focus 2007;23(5):E12.

    Article  PubMed  Google Scholar 

  22. Lee MW, De Salles AA, Frighetto L, Torres R, Behnke E, Bronstein JM. Deep brain stimulation in intraoperative MRI environment – comparison of imaging techniques and electrode fixation methods. Minim Invasive Neurosurg 2005;48(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  23. Nimsky C, Ganslandt O, von Keller B, Fahlbusch R. Intraoperative high-field MRI: anatomical and functional imaging. Acta Neurochir Suppl 2006;98:87–95.

    Article  PubMed  CAS  Google Scholar 

  24. Nimsky C, von Keller B, Ganslandt O, Fahlbusch R. Intraoperative high-field magnetic resonance imaging in transsphenoidal surgery of hormonally inactive pituitary macroadenomas. Neurosurgery 2006;59(1):105–14; discussion 105–114.

    Article  PubMed  Google Scholar 

  25. Nimsky C, Fujita A, Ganslandt O, von Keller B, Kohmura E, Fahlbusch R. Frameless stereotactic surgery using intraoperative high-field magnetic resonance imaging. Neurol Med Chir (Tokyo) 2004;44(10):522–33; discussion 534.

    Article  Google Scholar 

  26. Hall WA, Truwit CL. Intraoperative MR-guided neurosurgery. J Magn Reson Imaging 2008;27(2):368–75.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Fraser, J.F., Schwartz, T.H., Kaplitt, M.G. (2009). BrainLab Image Guided System. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics