Skip to main content

Accuracy in Stereotactic and Image Guidance

  • Reference work entry
Textbook of Stereotactic and Functional Neurosurgery

Abstract

Stereotactic surgery has traditionally been defined by its unique mechanical instruments, by a subset of neurological and neurosurgical conditions, and by an expectation of accuracy and precision, but at its most fundamental level there is the underlying concept of co-registration. It is this ability to correlate an atlas or imaging study with the surgical field that enables the highly accurate, reliable, and safe procedures of the field today. This chapter will review the mathematical methodology underlying this process and the type of accuracy that can be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arun KS, Huang TS, Blostein SD. Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell 1987;9:698–700.

    Article  Google Scholar 

  2. Fitzpatrick JM, West J, Maurer CR, Jr. Predicting error in rigid body, point-based registration. IEEE Trans Med Imaging 1998;17:694–702.

    Article  PubMed  CAS  Google Scholar 

  3. Besl PJ, McKay ND. “A method for registration of 3D shapes.” IEEE Trans Pattern Anal Mach Intell 1992;14(2):239–56.

    Article  Google Scholar 

  4. Hartov A, Roberts DW, Paulsen KD. “A comparative analysis of coregistered ultrasound and magnetic resonance imaging in neurosurgery.” Neurosurgery 2008;62 3 Suppl 1:91–9; discussion: 99–101.

    Article  PubMed  Google Scholar 

  5. West JB, Fitzpatrick JM. “The distribution of target registration error in rigi-body point-based registration.” In: Kuba A editor. IPMI’99: information processing in medical imaging. Lecture notes in computer science, vol 1613. Berlin: Springer; 1999. p. 460–5.

    Google Scholar 

  6. Polaris Optical Tracking System. “Application programmer’s interface guide.” Waterloo ON: Northern Digital Inc.; 1999.

    Google Scholar 

  7. Lunn KE, Paulsen KD, Roberts DW, Kennedy FE, Hartov A, West JD. Displacement estimation with co-registered ultrasound for image guided neurosurgery: a quantitative in vivo porcine study. IEEE Trans Med Imaging 2003;22(11):1358–68.

    Article  PubMed  Google Scholar 

  8. Maurer CR, Fitzpatrick JM, Galloway RL, Wang MY, Maciunas RJ, Allen GS. The accuracy of imageguided neurosurgery using implantable fiducial markers. In: Lemke HU, Inamura K, Jaffe CC, Vannier MW, editors. Computer assisted radiology. Berlin: Springer; 1995. p. 1197–202. (http://citeseer.ist.psu.edu/maurer95accuracy.html)

    Google Scholar 

  9. Friets E. “The frameless stereotaxic operating microscope: system analysis, enhancements, and nonfiducial registration.” PhD Thesis, Dartmouth College, Hanover NH; 1993.

    Google Scholar 

  10. Miga MI, Sinha TK, Cash DM, Galloway RL, Weil RJ. Cortical surface registration for image-guided neurosurgery using laser-range scanning. IEEE Trans Med Imaging 2003;22(8):973–85.

    Article  PubMed  Google Scholar 

  11. Sun H, Lunn KE, Farid H, Wu Z, Roberts DW, Hartov A, Paulsen KD. Stereopsis-guided brain shift compensation. IEEE Trans Med Imaging 2005;24(8):1039–52.

    Article  PubMed  Google Scholar 

  12. Lorensen WE, Cline HE. Marching cubes: a high resolution 3D surface construction algorithm. Comput Graphics 1987;21:163–9.

    Article  Google Scholar 

  13. Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V. Laser surface scanning for patient registration in intracranial image-guided surgery. Technique Assessments. Neurosurgery 2002;50(4): 797–803.

    Article  PubMed  Google Scholar 

  14. Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948;27:379–423, 623-56.

    Google Scholar 

  15. Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE Trans Med Imaging 2003;22(8):986–1004.

    Article  PubMed  Google Scholar 

  16. Wu Z, Hartov A, Paulsen KD, Roberts DW. Multimodal image re-registration via mutual information to account for initial tissue motion during image-guided neurosurgery. Conf Proc IEEE Eng Med Biol Soc 2004;3:1675–8 (IEEE Cat. No.04CH37558).

    PubMed  CAS  Google Scholar 

  17. William PV, Wells M, III. Alignment by maximization of mutual information. Int J Comput Vis 1997;24(2):137–54.

    Article  Google Scholar 

  18. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging 1999;18(8):712–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hartov, A., Roberts, D.W. (2009). Accuracy in Stereotactic and Image Guidance. In: Lozano, A.M., Gildenberg, P.L., Tasker, R.R. (eds) Textbook of Stereotactic and Functional Neurosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69960-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69960-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69959-0

  • Online ISBN: 978-3-540-69960-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics