Skip to main content

5 Quantitative Approaches to Phylogenetics

  • Reference work entry
  • First Online:
Handbook of Paleoanthropology

Abstract

We review Hennigian, maximum likelihood, and different Bayesian approaches to quantitative phylogenetic analysis and discuss their strengths and weaknesses. We also discuss various protocols for assessing the relative robustness of one's results. Hennigian approaches are justified by the Darwinian concepts of phylogenetic conservatism and the cohesion of homologies, embodied in Hennig's Auxiliary Principle, and applied using outgroup comparisons. They use parsimony as an epistemological tool. Maximum likelihood and Bayesian likelihood approaches are based on an ontological use of parsimony, choosing the simplest model possible to explain the data. All methods identify the same core of unambiguous data in any given data set, producing highly similar results. Disagreements most often stem from insufficient numbers of unambiguous characters in one or more of the data types. Appeals to Popperian philosophy cannot justify any kind of phylogenetic analysis, because they argue from effect to cause rather than cause to effect. Nor can any approach be justified by statistical consistency, because all may be consistent or inconsistent depending on the data being analyzed. If analyses based on different types of data or using different methods of phylogeny reconstruction, or some combination of both, do not produce the same results, more data are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams E (1972) Consensus techniques and the comparison of taxonomic trees. Syst Zool 21: 390–397

    Article  Google Scholar 

  • Andrews P (1992) Evolution and environment in the Hominoidea. Nature 360: 641–646

    Article  CAS  PubMed  Google Scholar 

  • Ayres RU (1994) Information, entropy and progress: A new evolutionary paradigm. American Institute of Physics Press, New York

    Google Scholar 

  • Barnard GA, Bayes T (1958) Studies in the history of probability and statistics: IX. Thomas Bayes's essay towards solving a problem in the doctrine of chances. Biometrica 45: 293–315

    Article  Google Scholar 

  • Begun DR (2001) African and Eurasian Miocene hominoids and the origins of the Hominidae. In: de Bonis L, Koufos G, Andrews P (eds) Phylogeny of the neogene hominoid primates of Eurasia, Cambridge University Press, Cambridge, pp 231–253

    Chapter  Google Scholar 

  • Begun DR, Ward CV, Rose MD (1997) Events in hominoid evolution. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny and fossils: Miocene hominoid evolution and adaptations. Plenum Press, New York, pp 389–415

    Chapter  Google Scholar 

  • Bremer K (1988) The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803

    Article  CAS  Google Scholar 

  • Brillouin L (1951) Physical entropy and information. J Appl Phys 22: 338–343

    Article  Google Scholar 

  • Brillouin L (1953) Negentropy principle of information. J Appl Phys 24: 1152–1163

    Article  Google Scholar 

  • Brillouin L (1962) Science and information theory, 2nd edn. Academic Press, New York

    Google Scholar 

  • Brooks DR (1981) Classifications as languages of empirical comparative biology. In: Funk VA, Brooks DR (eds) Advances in Cladistics: Proceedings of the First Meeting of the Willi Hennig Society, New York Botanical Garden, New York, pp 61–70.

    Google Scholar 

  • Brooks DR, McLennan DA (2002) The nature of diversity. Chicago University Press, Chicago

    Book  Google Scholar 

  • Brooks DR, O'Grady RT, Wiley EO (1986) A measure of the information content of phylogenetic trees, and its use as an optimality criterion. Syst Zool 35: 571–581

    Article  Google Scholar 

  • Camin JH, Sokal RR (1965) A method for deducing branching sequences in phylogeny. Evolution 19: 311–326

    Article  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: Models and estimation procedures. Evolution 21: 550–570

    Article  Google Scholar 

  • Charlesworth MJ (1956) Aristotle's razor. Philos Stud 6: 105–112

    Article  Google Scholar 

  • Churchill SP, Wiley EO, Hauser LA (1984) A critique of Wagner Groundplan-divergence studies and a comparison with other methods of phylogenetic analysis. Taxon 33: 212–232

    Article  Google Scholar 

  • Collard M, Wood B (2001) How reliable are current estimates of fossil catarrhine phylogeny? An assessment using extant great apes and old world monkeys. In: de Bonis L, Koufos G, Andrews P (eds) Phylogeny of the neogene hominoid primates of Eurasia. Cambridge University Press, Cambridge, pp 118–150

    Chapter  Google Scholar 

  • Colless DH (1966) A note on Wilson's consistency test for phylogenetic hypotheses. Syst Zool 15: 358–359

    Article  Google Scholar 

  • Colless DH (1985) On “Character” and related terms. Syst Zool 34: 229–233

    Article  Google Scholar 

  • Danser BH (1950) A theory of systematics. Biblioth Biotheor 4: 113–180

    Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • Darwin C (1872) On the origin of species, 6th edn. John Murray, London

    Google Scholar 

  • de Queiroz K, Poe S (2001) Philosophy and phylogenetic inference: A comparison of likelihood and parsimony methods in the context of Karl R. Popper's writings on corroboration. Syst Biol 50: 305–321

    Article  CAS  PubMed  Google Scholar 

  • de Queiroz K, Poe S (2003) Failed refutations: Further comments on parsimony and likelihood methods and their relationship to Popper's degree of corroboration. Syst Biol 52: 352–367

    PubMed  Google Scholar 

  • Disotell T (1996) The phylogeny of old world monkeys. Evol Anthropol 5: 18–24

    Article  Google Scholar 

  • Doolittle WF (2000) Uprooting the tree of life. Sci Am 282(2): 90–95

    Article  CAS  PubMed  Google Scholar 

  • Edwards AWF (1972) Likelihood. Cambridge University Press, Cambridge

    Google Scholar 

  • Edwards AWF (1996) The origin and early development of the method of minimum evolution for the reconstruction of phylogenetic trees. Syst Biol 45: 79–91

    Article  Google Scholar 

  • Edwards AWF, Cavalli-Sforza LL (1963) The reconstruction of evolution. Ann Hum Genet 27: 105–106

    Google Scholar 

  • Edwards AWF, Cavalli-Sforza LL (1964) Reconstruction of evolutionary trees. In: Heywood VH, McNeill J (eds) Phenetic and phylogenetic classification. Systematics Association Publication No. 6, London, pp 67–76

    Google Scholar 

  • Efron B (1979) Bootstrap methods: Another look at the jackknife. Ann Stat 7: 1–26.

    Article  Google Scholar 

  • Eldredge N, Cracraft J (1980) Phylogenetic patterns and the evolutionary process. Columbia University Press, New York

    Google Scholar 

  • Engelmann GF, Wiley EO (1977) The place of ancestor-descendant relationships in phylogeny reconstruction. Syst Zool 26: 1–11

    Article  Google Scholar 

  • Faith DP, Trueman JWH (2001) Towards an inclusive philosophy for phylogenetic inference. Syst Biol 50: 331–350

    Article  CAS  PubMed  Google Scholar 

  • Farris JS (1970) Methods of computing Wagner trees. Syst Zool 19: 83–92

    Article  Google Scholar 

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106: 645–668

    Article  Google Scholar 

  • Farris JS (1973) A probability model for inferring evolutionary trees. Syst Zool 22: 250–25

    Article  Google Scholar 

  • Farris JS (1977) Phylogenetic analysis under Dollo's Law. Syst Zool 26: 77–88

    Article  Google Scholar 

  • Farris JS (1979) The information content of the phylogenetic system. Syst Zool 28: 483–519

    Article  Google Scholar 

  • Farris JS (1983) The logical basis of phylogenetic analysis. In: Platnick NI, Funk VA (eds) Advances in cladistics, vol 2. Columbia University Press, New York

    Google Scholar 

  • Farris JS (1989) The retention index and rescaled consistency index. Cladistics 5: 417–419

    Article  Google Scholar 

  • Farris JS, Kluge AG, Eckardt MJ (1970) A numerical approach to phylogenetic systematics. Syst Zool 19: 172–191

    Article  Google Scholar 

  • Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG (1996) Parsimony jackknifing outperforms neighbour-joining. Cladistics 12: 99–124

    Article  Google Scholar 

  • Felsenstein J (1968) Statistical inference and the estimation of phylogenies. PhD Thesis, University of Chicago

    Google Scholar 

  • Felsenstein J (1973) Maximum likelihood and minimum steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22: 240–249

    Article  Google Scholar 

  • Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27: 401–410

    Article  Google Scholar 

  • Felsenstein J (1981a) A likelihood approach to character weighting and what it tells us about parsimony and compatibility. Biol J Linn Soc 16: 183–196

    Article  Google Scholar 

  • Felsenstein J (1981b) Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol 17: 368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1983) Parsimony in systematics: Biological and statistical issues. Ann Rev Ecol Syst 14: 313–333

    Article  Google Scholar 

  • Felsenstein J (1985a) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  • Felsenstein J (1985b) Statistical inference and the estimation of phylogenies. Ph.D. dissertation, University of Chicago, Chicago

    Google Scholar 

  • Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Inc., Sunderland

    Google Scholar 

  • Felsenstein J, Sober E (1986) Parsimony and likelihood: An exchange. Syst Zool 35: 617–626

    Article  Google Scholar 

  • Fisher RA (1922) On the mathematical foundations of theoretical statistics. Phil Trans Roy Soc Lon Ser A 222: 309–368

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: Minimum change for a specified tree topology. Syst Zool 20: 406–416

    Article  Google Scholar 

  • Gaffney ES (1979) An introduction to the logic of phylogeny reconstruction. In: Cracraft J, Eldredge N (eds) Phylogenetic analysis and paleontology. Columbia University Press, New York, pp 79–111

    Google Scholar 

  • Gatlin L (1975) Information theory and the living system. Columbia University Press, New York

    Google Scholar 

  • Geyer CJ (1991) Constrained maximum-likelihood exemplified by isotonic convex logistic-regression. J Am Stat Assoc 86: 717–724

    Article  Google Scholar 

  • Gissi C, Reyes A, Pesole G, Saccone C (2000) Lineage-specific evolutionary rate in mammalian mtDNA. Mol Biol Evol 17: 1022–1031

    Article  CAS  PubMed  Google Scholar 

  • Goldman N (1990) Maximum likelihood inference of phylogenetic trees, with special reference to a poisson process model of DNA substitution and to parsimony analysis. Syst Zool 39: 345–361

    Article  Google Scholar 

  • Goloboff PA (2003) Parsimony, likelihood and simplicity. Cladistics 19: 91–103

    Article  Google Scholar 

  • Green PJ (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82: 711 1995

    Article  Google Scholar 

  • Groves C (1978) Phylogenetic and population systematics of the mangabeys (Primates: Cercopithecoidea). Primates 19: 1–34

    Article  Google Scholar 

  • Harper CW Jr (1979) A Bayesian probability view of phylogenetic systematics. Syst Zool 28: 547–533

    Article  Google Scholar 

  • Harris E (2000) Molecular systematics of the old world monkey tribe Papionini: Analysis of the total available genetic sequences. J Hum Evol 38: 235–256

    Article  CAS  PubMed  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97–109

    Article  Google Scholar 

  • Hawks J (2004) How much can cladistics tell us about early hominid relationships? Am J Phys Anthropol 125: 207–219

    Article  PubMed  Google Scholar 

  • Hendy MD, Penny D (1982) Branch and bound algorithms to determine minimal evolutionary trees. Math Biosci 59: 277–290

    Article  Google Scholar 

  • Hennig W (1950) Grundzüge einer theorie der phylogenetischen systematik. Deutscher Zentralverlag, Berlin

    Google Scholar 

  • Hennig W (1966) Phylogenetic systematics. Illinois University Press, Urbana

    Google Scholar 

  • Hillis DM, Huelsenbeck JP, Swofford DL (1994) Hobgloblin of phylogenetics? Science 369: 363–364

    CAS  Google Scholar 

  • Hillis DM, Bull JJ, White ME, Badgett MR, Molineaux IJ (1992) Experimental phylogenetics: Generation of a known phylogen. Science 255: 589–592

    Article  CAS  PubMed  Google Scholar 

  • Hillis DM, Bull JJ, White ME, Badgett MR, Molineaux IJ (1993) Experimental approaches to phylogenetic analysis. Syst Biol 42: 90–92

    Article  Google Scholar 

  • Honderich T (1995) The Oxford companion to philosophy. Oxford University Press, Oxford

    Google Scholar 

  • Huelsenbeck JP (1997) Is the Felsenstein zone a fly trap? Syst Biol 46: 69–74

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Crandall KA (1997) Phylogeny estimation and hypothesis testing using maximum likelihood. Ann Rev Ecol Syst 28: 437–466

    Article  Google Scholar 

  • Huelsenbeck JP, Hillis DM (1993) Success of phylogenetic methods in the four-taxon case. Syst Biol 42: 247–264

    Article  Google Scholar 

  • Huelsenbeck JP, Nielsen R (1999) Effect of nonindependent substitution on phylogenetic accuracy. Syst Biol 48: 317–328

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (1997a) Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science 276: 227–232

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (1997b) Maximum likelihood of phylogenies using stratigraphic data. Paleobiology 23: 174–180

    Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference in phylogeny. Syst Biol 51: 673–688

    Article  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist B, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314

    Article  CAS  PubMed  Google Scholar 

  • Jaynes ET (1957a) Information theory and statistical mechanics I. Phys Rev 106: 620

    Article  Google Scholar 

  • Jaynes ET (1957b) Information theory and statistical mechanics II. Phys Rev 108: 171

    Article  Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19: 101–108

    Article  PubMed  Google Scholar 

  • Kluge AG (1989) Metacladistics. Cladistics 5: 291–294

    Article  Google Scholar 

  • Kluge AG (1990) Species as historical individuals. Biol Philos 5: 417–431

    Article  Google Scholar 

  • Kluge AG (1991) Boine snake phylogeny and research cycles. Misc Publ Museum Zool Univ Mich 178: 1–58.

    Google Scholar 

  • Kluge AG (1997) Sophisticated falsification and research cycles: Consequences for differential character weighting in phylogenetic systematics. Zool Scripta 26: 349–360

    Article  Google Scholar 

  • Kluge AG (1997) Testability and the refutation and corroboration of cladistic hypotheses. Cladistics 13: 81–96

    Article  Google Scholar 

  • Kluge AG (1999) The science of phylogenetic systematics: Explanation, prediction, and test. Cladistics 15: 429–436

    Article  Google Scholar 

  • Kluge AG (2001) Philosophy and phylogenetic inference: A comparison of likelihood and parsimony methods in the context of Karl Popper's writings on corroboration. Cladistics 17: 395–399

    Article  Google Scholar 

  • Kluge AG (2003) On the deduction of species relationships: A précis. Cladistics 19: 233–239

    Article  Google Scholar 

  • Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18: 1–32

    Article  Google Scholar 

  • Kluge AG, Wolf AJ (1993) Cladistics: What's in a word? Cladistics 9: 183–199

    Article  Google Scholar 

  • Kullbach S (1951) Information theory and statistics. John Wiley & Sons, New York

    Google Scholar 

  • Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16: 750–759

    Article  CAS  Google Scholar 

  • Lewis GN (1930) The Principle of Identity and the Exclusion of Quantum States. Phys Rev 36: 1144–1153

    Article  Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50: 913–925

    Article  CAS  PubMed  Google Scholar 

  • Li S (1996) Phylogenetic tree construction using Markov Chain Monte Carlo. Ph.D. disseration, Ohio State University, Columbus

    Google Scholar 

  • Lieberman D (1999) Homology and hominid phylogeny: Problems and potential solutions. Evol Anthropol 7: 142–151

    Article  Google Scholar 

  • Lockhart PJ, Steel MA, Hendy MD, Penny D (1994) Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol 11: 605–612

    CAS  PubMed  Google Scholar 

  • Lundberg JG (1972) Wagner networks and ancestors. Syst Zool 18: 1–32

    Google Scholar 

  • Maddison WP, Donoghue MJ, Maddison DR (1984) Outgroup analysis and parsimony. Syst Zool 33: 83–103

    Article  Google Scholar 

  • Margush T, McMorris FR (1981) Consensus n-trees. Bull Math Biol 43: 239-244

    Google Scholar 

  • Mau B (1996) Bayesian phylogenetic inference via Markov chain Monte Carlo Methods. Ph.D. dissertation, University of Wisconsin, Madison (abstract)

    Google Scholar 

  • Mau B, Newton MA (1997) Phylogenetic inference for binary data on dendrograms using Markov chain Monte Carlo. J Comp Graph Stat 6: 122–131

    Google Scholar 

  • Mau B, Newton MA, Larget B (1999) Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55: 1–12

    Article  CAS  PubMed  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21: 1087–1092

    Article  CAS  Google Scholar 

  • Mitchell A, Mitter C, Regier JC (2000) More taxa or more characters revisited: Combining data from nuclear protein coding genes for phylogenetic analyses of Noctuoidea (Insecta: Lepidoptera). Syst Biol 49: 202–224

    Article  CAS  PubMed  Google Scholar 

  • Mitchell PC (1901) On the intestinal tract of birds. Trans Linn Soc Lond, Zool 8: 173–275

    Article  Google Scholar 

  • Mitchell PC (1905) On the intestinal tract of mammals. Trans Zool Soc Lond 17: 437–536

    Article  Google Scholar 

  • Nelson CH, Van Horne GS (1975) A new simplified method for constructing Wagner networks and the cladistics of pentachaeta (Compositae, Asteraeae). Brittonia 27: 362–372

    Article  Google Scholar 

  • Newman TK, Jolly C, Rogers J (2004) Mitochondrial phylogeny and systematics of baboons (Papio). Am J Phys Anthropol 124: 17–27

    Article  PubMed  Google Scholar 

  • Newton MA, Zhang YL (1999) A recursive algorithm for nonparametric analysis with missing data. Biometrika 86: 15–26

    Article  Google Scholar 

  • Neyman J (1974) Molecular studies: A source of novel statistical problems. In: Gupta SS, Yackel J (eds) Statistical decision theory and related topics. Academic Press, New York, pp 1–27

    Google Scholar 

  • Nylander JA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53: 47–67

    Article  PubMed  Google Scholar 

  • Pagel M, Meade A, Barker D (2004) Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53: 673–684

    Article  PubMed  Google Scholar 

  • Pagel MD (1992) A method for the analysis of comparative data. J Theor Biol 156: 431–442

    Article  Google Scholar 

  • Penny D, Hendy MD, Steel MA (1992) Progress with methods for constructing evolutionary trees. Trends Ecol Evol 7: 73–79

    Article  CAS  PubMed  Google Scholar 

  • Platnick NI, Funk VA (1983) Advances in cladistics, vol 2. Columbia University Press, New York

    Google Scholar 

  • Popper KR (1968) The logic of scientific discovery. Harper and Row, New York

    Google Scholar 

  • Popper KR (1997) The demarcation between science and metaphysics. In: Schilpp PA (ed) The philosophy of Rudolph Carnap. Open Court, La Salle, pp 183–226

    Google Scholar 

  • Posada D, Crandall KA (1998) ModelTest: Testing the model of DNA substitution. Bioinformatics 14: 817–818

    Article  CAS  PubMed  Google Scholar 

  • Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36: 1389–1401

    Article  Google Scholar 

  • Rae T (1997) The early evolution of the hominoid face. In: Begun DR, Ward CV, Rose MD (eds) Function, phylogeny and fossils: Miocene hominoid evolution and adaptations. Plenum Press, New York, pp 59–77

    Chapter  Google Scholar 

  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J Mol Evol 43: 304–311

    Article  CAS  PubMed  Google Scholar 

  • Rieppel O (2003) Popper and systematics. Syst Biol 52: 259–271

    Article  PubMed  Google Scholar 

  • Rodriguez F, Oliver JL, Marin A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142: 485–501

    Article  CAS  PubMed  Google Scholar 

  • Rokas A, Williams BL, King N, Carroll SB (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425: 796–804

    Article  CAS  Google Scholar 

  • Ronquist F (2004) Bayesian inference of charcter evolution. Trends Ecol Evol 19: 475–481

    Article  PubMed  Google Scholar 

  • Ross C, Williams B, Kay RF (1998) Phylogenetic analysis of anthropoid relationships. J Hum Evol 35: 221–306

    Article  CAS  PubMed  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Syst Tech J 27: 379–423

    Google Scholar 

  • Siddall ME, Kluge AG (1997) Probabilism and phylogenetic inference. Cladistics 13: 313–336

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy: The principles and practice of numerical classification. W.H. Freeman, San Francisco

    Google Scholar 

  • Sober E (1983) Parsimony in systematics: Philosophical issues. Ann Rev Ecol Syst 14: 335–357

    Article  Google Scholar 

  • Sober E (1988) Reconstructing the past. Parsimony, evolution, and inference. MIT Press, Cambridge

    Google Scholar 

  • Sokal RR, Sneath PHA (1963) Numerical taxonomy. W.H. Freeman, San Francisco

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Taxonomic congruence in the Leptopodomorpha re-examined. Syst Zool 30: 309–325

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2003) Applying the bootstrap in phylogeny reconstruction. Stat Sci 18: 256–267

    Article  Google Scholar 

  • Sorenson MD (1999) TreeRot. Boston University, Boston

    Google Scholar 

  • Sporne KR (1949) A new approach to the problem of the primitive flower. New Phytol 48: 259–276

    Article  Google Scholar 

  • Sporne KR (1953) Statistics and the evolution of dicotyledons. Evol 8: 55–64

    Article  Google Scholar 

  • Steel M, Penny D (2000) Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol Biol Evol 17: 839–850

    Article  CAS  PubMed  Google Scholar 

  • Steel MA, Hendy MD, Penny D (1993) Parsimony can be consistent! Syst Biol 42: 581–587

    Article  Google Scholar 

  • Strait DS, Grine FE, Moniz MA (1997) A reappraisal of early hominid phylogeny. J Hum Evol 23: 17–82

    Article  Google Scholar 

  • Strasser E, Delson E (1987) Cladistic analysis of cercopithecoid relationships. J Hum Evol 16: 81–99

    Article  Google Scholar 

  • Swofford DL (1998) Phylogenetic analysis using parsimony (*and other methods). Sinaur Associates, Sunderland Massachusetts

    Google Scholar 

  • Swofford DL, Maddison WP (1987) Reconstructing ancestral character states under Wagner parsimony. Math Biosci 87: 199–229

    Article  Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics, 2nd edn. Sinauer Associates, Sunderland Massachusetts, pp 407–514

    Google Scholar 

  • Tateno Y, Takezaki N, Nei M (1994) Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum parsimony methods when substitution rate varies with site. Mol Biol Evol 11: 261–277

    CAS  PubMed  Google Scholar 

  • Tierney L (1994) Markov chains for exploring posterior distributions. Ann Stat 22: 1701–1728

    Article  Google Scholar 

  • Tillyard RJ (1921) A new classification of the order Perlaria. Can Entomol 53: 35–43

    Article  Google Scholar 

  • Tribus M, McIrvine MC (1971) Energy and information. Sci Am 225: 179–188

    Article  Google Scholar 

  • Tuffley C, Steel M (1997) Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bull Math Biol 59: 581–607

    Article  CAS  PubMed  Google Scholar 

  • Wagner PJ (1998) A likelihood approach for evaluating estimates of phylogenetic relationships among fossil taxa. Paleobiology 24: 430–449

    Google Scholar 

  • Wagner WH Jr (1952) The fern genus Diellia: Structure, affinities, and taxonomy. Univ Calif Publ Botany 26: 1–212

    Google Scholar 

  • Wagner WH Jr (1961) Problems in the classification of ferns. In: Recent advances in botany. From lectures and symposia presented to the IX International Botanical Congress, Montreal, 1959. University of Toronto Press, Toronto, pp 841–844

    Google Scholar 

  • Wagner WH Jr (1969) The construction of a classification. In: Systematic biology. National Academy of Science USA, Publication 1692, pp 67–90

    Google Scholar 

  • Wagner WH Jr (1980) Origin and philosophy of the groundplan-divergence method of cladistics. Syst Bot 5: 173–193

    Article  Google Scholar 

  • Watrous LE, Wheeler QD (1981) The outgroup comparison method of character analysis. Syst Zool 30: 1–11

    Article  Google Scholar 

  • Wenzel JW, Carpenter JM (1994) Comparing methods: Adaptive traits and tests of adaptation. In: Eggleton P, Vane-Wright RI (eds) Phylogenetics and ecology. Academic Press, London, pp 79–101

    Google Scholar 

  • Wenzel JW, Siddall ME (1999) Noise. Cladistics 15: 51–64

    Article  Google Scholar 

  • Whiffin T, Bierner MW (1972) A quick method for computing Wagner trees. Taxon 21: 83–90

    Article  Google Scholar 

  • Wiens J (1995) Polymorphic characters in phylogenetic systematics. Syst Biol 44: 482–500

    Article  Google Scholar 

  • Wiley EO (1975) Karl R. Popper, systematics, and classification: A reply to Walter Bock and other evolutionary taxonomists. Syst Zool 24: 233–243

    Article  Google Scholar 

  • Wiley EO (1981) Phylogenetics: The theory and practice of phylogenetic systematics. John Wiley and Sons, New York

    Google Scholar 

  • Wiley EO, Siegel-Causey DJ, Brooks DR, Funk VA (1991) The compleat cladist: A primer of phylogenetic procedures. Mus Nat Hist Univ Kansas, Spec Publ 19: 1–158

    Google Scholar 

  • Wilkinson, M (1994) Common cladistic information and its consensus representation: Reduced Adams and reduced cladistic consensus trees and profiles. Syst Biol 43: 343–368

    Article  Google Scholar 

  • Wilson EO (1965) A consistency test for phylogenies based on contemporaneous species. Syst Zool 14: 214–200

    Article  Google Scholar 

  • Wilson EO (1967) The validity of the “consistency test” for phylogenetic hypotheses. Syst Zool 16: 104

    Article  Google Scholar 

  • Wu CFJ (1986) Jackknife, bootstrap and other resampling methods in regression analysis. Ann Stat 14: 1261–1295

    Article  Google Scholar 

  • Yang Z (1994) Statistical properties of the maximum likelihood method of phylogenetic estimation and comparison with distance matrix methods. Syst Biol 43: 329–342

    Article  Google Scholar 

  • Yang Z (1996) Phylogenetic analysis using parsimony and likelihood methods. J Mol Evol 42: 294–307

    Article  CAS  PubMed  Google Scholar 

  • Yang ZH, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: A Markov Chain Monte Carlo method Mol Biol Evol 14: 717–724

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15: 496–503

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the editors for inviting us to contribute to this volume. For their participation in a graduate seminar course entitled “Foundations of Phylogenetics,” we thank Jaret Bilewitch, Charmaine Condy, Nikolas Gour, Dominik Halas, Stephanie Hill, Michelle Mattern, Robert Murphy, Richard Winterbottom, David Zamparo, and David Zanatta. DCE, JF, KEF, and LAT thank Robert Reisz and Johannes Müller for thought-provoking discussions. DRB, DCE, and KEF acknowledge funding support from the Natural Sciences and Engineering Research Council (NSERC) of Canada. JF acknowledges support from the Government of Canada Awards.

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg New York

About this entry

Cite this entry

Folinsbee, K.E., Evans, D.C., Fröbisch, J., Tsuji, L.A., Brooks, D.R. (2007). 5 Quantitative Approaches to Phylogenetics. In: Handbook of Paleoanthropology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33761-4_5

Download citation

Publish with us

Policies and ethics