9 Evolution of the Primate Brain

  • Dean Falk
Reference work entry


The active intelligence of today's primates flowered from trends that sculpted primate brain evolution across deep time: an increase in absolute brain size but a decrease in relative brain size (RBS, the ratio of brain size to body size) in bigger-bodied compared to smaller-bodied species (reflecting developmental scaling within species), increased RBS in highly “encephalized” species, and increased complexity of brain organization in conjunction with major adaptive shifts and selection for neurological specializations. Indices that quantify encephalization are discussed, as are developmental and physiological factors that constrain brain size. Data are provided which suggest that absolute and RBS increased steadily rather than erratically during the last 3 Myr of hominin evolution, and the “received wisdom” that human frontal lobes are disproportionately enlarged is questioned. Despite the enormous importance attributed to the evolution of primate brain size, the conviction remains that size alone is not enough to account for the observed diversity in primate behavior and that circuitry, neurochemistry, and subsystems (modules) were reorganized within brains to accommodate evolving behavioral repertoires (such as those entailed in language). Arguments about the relative evolutionary merits of brain size versus neurological reorganization are reviewed and, to some extent, reconciled.


Brain Size Primate Evolution Cranial Capacity Relative Brain Size Encephalization Quotient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aboitiz F (1996) Does bigger mean better? Evolutionary determinants of brain size and structure. Brain Behav Evol 47: 225–245PubMedCrossRefGoogle Scholar
  2. Aboitiz F, Ricardo GV (1997) The evolutionary origin of the language areas in the brain. A neuroanatomical perspective. Brain Res Rev 25: 381–396PubMedCrossRefGoogle Scholar
  3. Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis; the brain and the digestive system inhuman and primate evolution. Curr Anthropol 36: 199–221CrossRefGoogle Scholar
  4. Aiello LC, Bates N, Joffe T (2001) In defense of the expensive tissue hypothesis. In: Falk D Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 57–78CrossRefGoogle Scholar
  5. Allman J (1977) Evolution of the visual system in the early primates. In: Sprague JM, Epstein AN (eds) Progress in psychology and physiological psychology. Academic Press, New York, pp 1–53Google Scholar
  6. Allman J (1990) Evolution of neocortex. In: Jones EG, Peters A (eds) Cerebral cotex, volume B: Comparative structure and evolution of cerebral cortex. Part II. Plenum Press, New York, pp 269–283CrossRefGoogle Scholar
  7. Amunts K, Schleicher A, Bürgel U, Mohlberg H, Uylings HBM, Zilles K (1999) Broca's region revisited: Cytoarchitectures and intersubject variability. J Comp Neurol 412: 319–341PubMedCrossRefGoogle Scholar
  8. Armstrong E, Clarke MR, Hill EM (1987) Relative size of the anterior thalamic nuclei differentiates anthropoids by social system. Brain Behav Evol 30: 263–271PubMedCrossRefGoogle Scholar
  9. Bailey P (1948) Concerning cytoarchitecture of the frontal lobe of chimpanzee (Pan satyrus) and man (Homo sapiens). In: The frontal lobes. The Williams & Wilkins Company, Baltimore, pp 84–94Google Scholar
  10. Bailey P, von Bonin G, McCulloch WS (1950) The isocortex of the chimpanzee brain. The University of Illinois Press, UrbanaGoogle Scholar
  11. Balter MA, Gibbons A (2002) Were ‘little people’ the first to venture out of Africa? Science 297: 26–27PubMedCrossRefGoogle Scholar
  12. Barton RA (2001) The coordinated structure of mosaic brain evolution (commentary). Behav Brain Sci 24: 281–282CrossRefGoogle Scholar
  13. Barton RA, Harvey PH (2000) Mosaic evolution of brain structures in mammals. Nature 405: 1055–1058PubMedCrossRefGoogle Scholar
  14. Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory brain systems in primates, bats and insectivores. Philos Trans R Soc Lond B 348: 381–392CrossRefGoogle Scholar
  15. Bauchot R, Stephan H (1966) Données nouvelles sur l'encéphalisation des insectivores et des prosimiens. Mammalia 30: 160–196CrossRefGoogle Scholar
  16. Bauchot R, Stephan H (1969) Encephalisation et niveau evolutif chex les simiens. Mammalia 33: 235–275CrossRefGoogle Scholar
  17. Bear D, Schiff D, Saver J, Greenberg M, Freeman R (1986) Quantitative analysis of cerebral asymmetries. Fronto-occipital correlation, sexual dimorphism and association with handedness. Arch Neurol 43: 598–603PubMedCrossRefGoogle Scholar
  18. Brown B, Walker A, Ward CV, Leakey RE (1993) New Austalopithecus boisei calvaria from east Lake Turkana. Am J Phys Anthropol 91: 137–159PubMedCrossRefGoogle Scholar
  19. Brown P, Sutikna T, Morwood MJ, Soejono RP, Jatmiko, Saptomo EW, Due RA (2004) A new small-bodied hominin from the late Pleistocene of Flores, Indonesia. Nature 431: 1055–1061PubMedCrossRefGoogle Scholar
  20. Bruner E (2004) Geometric morphometrics and paleoneurology: Brain shape evolution in the genus Homo. J Hum Evol 47: 279–303PubMedCrossRefGoogle Scholar
  21. Byrne RW (2000) Evolution of primate cognition. Cogn Sci 24: 543–570CrossRefGoogle Scholar
  22. Cantalupo C, Hopkins WD (2001) Asymmetric Broca's area in great apes. Nature 414: 505PubMedCentralPubMedCrossRefGoogle Scholar
  23. Clutton-Brock TH, Harvey PH (1980) Primates, brains and ecology. J Zool 190: 309–323CrossRefGoogle Scholar
  24. Colebatch JG, Deiber MP, Passingham RE, Friston KJ, Frackowiak RSJ (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65: 1392–1401PubMedGoogle Scholar
  25. Connolly CJ (1950) External morphology of the primate brain. Charles C Thomas, Springfield, IllinoisGoogle Scholar
  26. Conroy GC, Vannier MW (1985) Endocranial volume determination of matrix-filled fossil skulls using high-resolution computed tomography. In: Tobias PV (ed) Hominid evolution: Past, present and future. Alan R. Liss, New York, pp 419–426Google Scholar
  27. Conroy GC, Vannier MW, Tobias PV (1990) Endocranial features of Australopithecus africanus revealed by 2- and 3-D computed tomography. Science 247: 838–841PubMedCrossRefGoogle Scholar
  28. Conroy GC, Weber GW, Seidler H, Tobias PV, Kane A, Brunsden B (1998) Endocranial capacity in an early hominid cranium from Sterkfontein, South Africa. Science 280: 1730–1731PubMedCrossRefGoogle Scholar
  29. Crosby EC, Humphrey T, Lauer EW (1962) Correlative anatomy of the nervous system. The Macmillan Company, New YorkGoogle Scholar
  30. de Winter W, Oxnard CE (2001) Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409: 710–714PubMedCrossRefGoogle Scholar
  31. Deacon TW (1992) Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Res 573: 8–26PubMedCrossRefGoogle Scholar
  32. Dronkers NF (1996) A new brain region for coordinating speech articulation. Nature 384: 159–161PubMedCrossRefGoogle Scholar
  33. Dunbar RIM (1998) The evolution of the social brain. Evol Anthropol 6: 178–190CrossRefGoogle Scholar
  34. Dunbar RIM (2003) The social brain: Mind, language, and society in evolutionary perspective. Annu Rev Anthropol 32: 163–181CrossRefGoogle Scholar
  35. Falk D (1978) Brain evolution in Old World monkeys. Am J Phys Anthropol 48: 315–319PubMedCrossRefGoogle Scholar
  36. Falk D (1980a) A reanalysis of the South African australopithecine natural endocasts. Am J Phys Anthropol 53: 525–539PubMedCrossRefGoogle Scholar
  37. Falk D (1980b) Hominid brain evolution: The approach from paleoneurology. Yrbk Phys Anthropol 23: 93–107CrossRefGoogle Scholar
  38. Falk D (1981) Comparative study of the endocranial casts of New and Old World monkeys. In: Ciochon RL, Chiarelli AB (eds) Evolutionary biology of the New World monkeys and continental drift. Plenum Press, New York, pp 275–292Google Scholar
  39. Falk D (1982) Mapping fossil endocasts. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 217–226CrossRefGoogle Scholar
  40. Falk D (1983) A reconsideration of the endocast of Proconsul africanus. In: Ciochon RL, Corruccini RS (eds) New interpretations of ape and human ancestry. Plenum Press, New York, pp 239–248CrossRefGoogle Scholar
  41. Falk D (1985) Hadar AL 162-28 endocast as evidence that brain enlargement preceded cortical reorganization in hominid evolution. Nature 313: 45–47PubMedCrossRefGoogle Scholar
  42. Falk D (1986) Endocranial casts and their significance for primate brain evolution. Comparative primate biology. vol. 1: Systematics, evolution, and anatomy. Alan R. Liss, New York. pp 477–490Google Scholar
  43. Falk (1987a) Brain lateralization in primates. Yrbk Phys Anthropol 30: 107–125CrossRefGoogle Scholar
  44. Falk D (1987b) Hominid paleoneurology. Yrbk Phys Anthropol 16: 13–30Google Scholar
  45. Falk D (1990) Brain evolution in Homo: The “radiator” theory (target article, commentaries and author's response). Behav Brain Sci 13: 333–381CrossRefGoogle Scholar
  46. Falk D (1997) Brain evolution in females: An answer to Mr. Lovejoy. In: Hager (eds) Women in human evolution. Routledge, London, pp 114–136Google Scholar
  47. Falk D (1998) Hominid brain evolution: Looks can be deceiving. Science 280: 1714PubMedCrossRefGoogle Scholar
  48. Falk D (2000a) Hominid brain evolution and the origins of music. In: Wallin NL, Merker B, Brown S (eds) The origins of music. MIT Press, Cambridge, pp 197–216Google Scholar
  49. Falk D (2000b) Primate diversity. WW Norton, New YorkGoogle Scholar
  50. Falk D (2001) The evolution of sex differences in primate brains. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 98–112CrossRefGoogle Scholar
  51. Falk D (2004a) Braindance, revised and expanded edition. University Press of Florida, GainesvilleGoogle Scholar
  52. Falk D (2004b) Hominin brain evolution: New century, new directions. Coll Antropol 28: 59–64PubMedGoogle Scholar
  53. Falk D (2004c) Prelinguistic evolution in early hominins: Whence motherese? (target article) Behav Brain Sci 27: 491–503Google Scholar
  54. Falk D (2004d) The “Putting the baby down” hypothesis: Bipedalism, babbling, and baby slings (response to commentaries). Behav Brain Sci 27: 526–541Google Scholar
  55. Falk D (2007) Constraints on brain size: The radiator hypothesis. In: Preuss TM, Kaas JH (eds) The evolution of primate nervous systems. Elsevier, in pressGoogle Scholar
  56. Falk D, Dudek B (1993) Mosaic evolution of the neocortex (commentary). Behav Brain Sci 16: 701–702CrossRefGoogle Scholar
  57. Falk D, Gibson KR (2001) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge .Google Scholar
  58. Falk D, Froese N, Sade D, Dudek B (1999) Sex differences in brain/body relationships of rhesus monkeys and humans. J Hum Evol 36: 233–238PubMedCrossRefGoogle Scholar
  59. Falk D, Redmond JC Jr, Guyer J, Conroy GC, Recheis W, Weber GW, Seidler H (2000) Early hominid brain evolution: A new look at old endocasts. J Hum Evol 38: 695–717PubMedCrossRefGoogle Scholar
  60. Falk D, Hildebolt C, Smith K, Morwood MJ, Sutikna T, Brown P, Jatmiko, Saptomo EW, Brunsden B, Prior F (2005) The brain of LB1, Homo floresiensis. Science 308: 242–245PubMedCrossRefGoogle Scholar
  61. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1–47PubMedCrossRefGoogle Scholar
  62. Fiez JA (1996) Cerebellar contributions to cognition. Neuron 16: 13–15PubMedCrossRefGoogle Scholar
  63. Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268: 1578–1584PubMedCrossRefGoogle Scholar
  64. Finlay BL, Darlington RB, Nicastro N (2001) Developmental structure in brain evolution. Behav Brain Sci 24: 283–308CrossRefGoogle Scholar
  65. Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Mazziotta JC (1997) Human brain function. Academic Press, San DiegoGoogle Scholar
  66. Gabunia L, Vekua A, Lordkipanidze D, Swisher CC, Ferring R, Justus A, Nioradze M, Tvalchrelidze M, Anton SC, Bosinski G, Joris O, de Lumley MA, Majsuradze G, Mouskhelishvili A (2000) Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: Taxonomy, geological setting, and age. Science 288: 1019–1025PubMedCrossRefGoogle Scholar
  67. Galaburda AM and Pandya DN (1982) Role of architectonics and connections in the study of primate brain evolution. In: Falk D, Armstrong E (eds) Primate brain evolution: Methods and concepts. Plenum Press, New York, pp 203–216CrossRefGoogle Scholar
  68. Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119: 593–609PubMedCrossRefGoogle Scholar
  69. Gannon PJ, Holloway RL, Broadfield DC, Braun AR (1998) Asymmetry of chimpanzee planum temporale: Human like pattern of Wernicke's brain language area homology. Science 279: 220–222PubMedCrossRefGoogle Scholar
  70. Gannon PJ, Kheck NM, Hof PR (2001) Language areas of the hominoid brain: A dynamic communicative shift on the upper east side planum. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 216–240CrossRefGoogle Scholar
  71. Garber PA (2004) New perspectives in primate cognitive ecology. Am J Primatol 62: 133–137PubMedCrossRefGoogle Scholar
  72. Gibson KR (1986) Cognition, brain size and the extraction of embedded food resources. In: Else JG, Lee PC (eds) Primate ontogeny, cognition, and social behaviour. Cambridge University Press, Cambridge, pp 93–103Google Scholar
  73. Gibson KR (2001) Bigger is better; primate rain size in relationship to cognition. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 79–97CrossRefGoogle Scholar
  74. Gould SJ (2001) Size matters and function counts. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp xiii–xviiCrossRefGoogle Scholar
  75. Gurche JA (1982) Early primate brain evolution. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 227–246CrossRefGoogle Scholar
  76. Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180: 126–142PubMedCrossRefGoogle Scholar
  77. Heffner HE, Heffner RS (1984) Temporal lobe lesions and perception of species-specific vocalizations by macaques. Science 226: 75–76PubMedCrossRefGoogle Scholar
  78. Heffner HE, Heffner RS (1986) Effect of unilateral and bilateral auditory cortex lesions on the discrimination of vocalization by Japanese macaques. J Neurophys 56: 683–701Google Scholar
  79. Hofman MA (1983) Encephalization in hominids: Evidence for the model of punctuationalism. Brain Behav Evol 22: 102–117PubMedCrossRefGoogle Scholar
  80. Hofman MA (2001) Brain evolution in hominids: are we at the end of the road? In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 113–127CrossRefGoogle Scholar
  81. Holloway RL (1974) On the meaning of brain size. A review of H.J. Jerison's 1973 evolution of the brain and intelligence. Science 184: 677–679CrossRefGoogle Scholar
  82. Holloway RL (1979) Brain size, allometry, and reorganization: Toward a synthesis. In: Hahn ME, Jensen G, Dudek BC (eds) Development and evolution of brain size: Behavioral implications. Academic Press, New York, pp 59–88CrossRefGoogle Scholar
  83. Holloway RL, Post DG (1982) The relativity of relative brain measures and hominid mosaic evolution. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 57–76CrossRefGoogle Scholar
  84. Holloway RL, Broadfield DC, Yuan MS (2004) The human fossil record volume three brain endocasts the paleoneurological evidence. Wiley-Liss, New YorkCrossRefGoogle Scholar
  85. Huffman O (2001) Geologic context and age of the Perning/Mojokerto Homo erectus, East Java. J Hum Evol 40: 353–362PubMedCrossRefGoogle Scholar
  86. Jackson WJ, Reite ML, Buxton DF (1969) The chimpanzee central nervous system: A comparative review. Primates Med 4: 1–51PubMedGoogle Scholar
  87. Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New YorkGoogle Scholar
  88. Jerison HJ (1982) Allometry, brain size, cortical surface, and convolutedness. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 77–84CrossRefGoogle Scholar
  89. Jerison HJ (2001) The study of primate brain evolution: Where do we go from here? In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 305–337CrossRefGoogle Scholar
  90. Jones KE, Mac Larnon AM (2004) Affording larger brains: Testing hypotheses of mammalian brain evolution on bats. Am Naturalilst 164: E20–E31CrossRefGoogle Scholar
  91. Kaas JH (1987) The organization and evolution of neocortex. In: Wise SP (ed) Higher brain function: Recent explorations of the brain's emergent properties. John Wiley, New York, pp 347–378Google Scholar
  92. Kaas JH (1995) The evolution of isocortex. Brain Behav Evol 46: 187–196PubMedCrossRefGoogle Scholar
  93. Kaskan PM, Finlay BL (2001) Encephalization and its developmental structure: How many ways can a brain get big? In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 14–29CrossRefGoogle Scholar
  94. Leigh SR (1992) Cranial capacity evolution in Homo erectus and early Homo sapiens. Am J Phys Anthropol 87: 1–13PubMedCrossRefGoogle Scholar
  95. Leigh SR (2004) Brain growth, life history, and cognition in primate and human evolution. Am J Phys Anthropol 62: 139–164Google Scholar
  96. LeMay M (1977) Asymmetries of the skull and handedness. Phrenology revisited. J Neurol Sci 32: 243–253PubMedCrossRefGoogle Scholar
  97. LeMay M, Billig MS, Geschwind N (1982) Asymmetries of the brains and skulls of nonhuman primates. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 263–277CrossRefGoogle Scholar
  98. Martin RD (1982) Allometric approaches to the evoluton of the primate nervous system. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 39–56CrossRefGoogle Scholar
  99. Martin RD (1990) Primate origins and evolution: A phylogenetic reconstruction. Chapman & Hall, LondonGoogle Scholar
  100. Martin RD (1996) Scaling of the mammalian brain: The maternal energy hypothesis. News Physiol Sci 11: 149–156Google Scholar
  101. Matano S, Hirasaki E (1997) Volumetric comparisons in the cerebellar complex of anthropoids, with special reference to locomotor types. Am J Phys Anthropol 103: 173–183PubMedCrossRefGoogle Scholar
  102. Matano S, Baron G, Stephan H, Frahm H (1985) Volume comparisons in the cerebellar complex of primates II. Cerebellar nuclei. Folia Primatol 44: 182–203PubMedCrossRefGoogle Scholar
  103. Milton K (1988) Foraging behavior and the evolution of primate intelligence. In: Byrne R, Whiten A (eds) Machiavellian intelligence. Clarendon Press, Oxford, pp 285–305Google Scholar
  104. Morwood MJ, Soejono RP, Roberts RG, Sutikna T, Turney CSM, Westaway KE, Rink WJ, Zhao JX, GC, van den Bergh Due RA, Hobbs DR, Moore MW, Bird MI, Fifield LK (2004) Archaeology and age of a new hominin from Flores in eastern Indonesia. Nature 431: 1087–1091PubMedCrossRefGoogle Scholar
  105. Muller RA, Courchesne E, Allen G (1998) The cerebellum: So much more. Science 282: 879–880PubMedCrossRefGoogle Scholar
  106. Oxnard CE (2004) Brain evolution: Mammals, primates, chimpanzees, and humans. Int J Primatol 25: 1127–1158CrossRefGoogle Scholar
  107. Passingham RE (1973) Anatomical differences between the brain of man and other primates. Brain Behav Evol 7: 337–359PubMedCrossRefGoogle Scholar
  108. Passingham RE (1975a) Changes in the size and organization of the brain in man and his ancestors. Brain Behav Evol 11: 73–90PubMedCrossRefGoogle Scholar
  109. Passingham RE (1975b) What's so special about man's brain? New Sci 68: 510–511Google Scholar
  110. Passingham RE, Ettlinger G (1974) A comparison of cortical functions in man and the other primates. In: Pfeiffer C, Smythies J (eds) International review of neurobiology. Academic Press, New York, pp 233–299Google Scholar
  111. Petersen M, Beecher M, Zoloth S, Moody D, Stebbins W (1978) Neural lateralization of species-specific vocalizations by Japanese macaques (Macaca fuscata). Science 202: 324–327PubMedCrossRefGoogle Scholar
  112. Petersen MR, Beecher MD, Zoloth SR, Green S, Marler PR, Moody DB, Stebbins WC (1984) Neural lateralization of vocalizations by Japanese macaques: Communicative significance is more important than acoustic structure. Behav Neurosci 98: 779–790PubMedCrossRefGoogle Scholar
  113. Petersen SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331: 585–589PubMedCrossRefGoogle Scholar
  114. Preuss TM (2000) What's human about the human brain? In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Press, Cambridge, pp 1219–1234Google Scholar
  115. Preuss TM (2001) The discovery of cerebral diversity: An unwelcome scientific revolution. In: Falk D, Gibson (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 138–164CrossRefGoogle Scholar
  116. Preuss TM, Goldman-Rakic PS (1991) Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. J Comp Neurol 310: 475–506PubMedCrossRefGoogle Scholar
  117. Preuss TM, Qi H-X, Kaas JH (1999) Distinctive compartmental organization of human primary visual cortex. Proc Natl Acad Sci USA 96: 11601–11606PubMedCentralPubMedCrossRefGoogle Scholar
  118. Radinsky LB (1972) Endocasts and studies of primate brain evolution. In: Tuttle R (ed) The functional and evolutonary biology of primates. Aldine, Chicago, pp 175–184Google Scholar
  119. Radinsky LB (1974) The fossil evidence of anthropoid brain evolution. Am J Phys Anthropol 41: 15–27CrossRefGoogle Scholar
  120. Radinsky LB (1975) Primate brain evolution. Am Sci 63: 656–663PubMedGoogle Scholar
  121. Radinsky LB (1979) The fossil record of primate brain evolutoin (49th James Arthur Lecture). American Museum of Natural History, New YorkGoogle Scholar
  122. Radinsky LB (1982) Some cautionary notes on making inferences about relative brain size. In: Armstrong E, Falk D (eds) Primate brain evolution, methods and concepts. Plenum Press, New York, pp 29–37CrossRefGoogle Scholar
  123. Ringo JL (1991) Neuronal interconnection as a function of brain size. Brain Behav Evol 38: 1–6PubMedCrossRefGoogle Scholar
  124. Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3: 131–141CrossRefGoogle Scholar
  125. Ruff CB, Trinkhaus E, Holliday TW (1997) Body mass and encephalizaiton in Pleistocene Homo. Nature 387: 173–176.PubMedCrossRefGoogle Scholar
  126. Schultz AH (1956) Postembryonic age changes. In: Hofer H, Schultz AH, Starck D (eds) Primatologia handbook of primatology. S Karger, New York, pp 887–964Google Scholar
  127. Semendeferi K (2001) Advances in the study of hominoid rain evolution: Magnetic resonance imaging (MRI) and 3-D reconstruction. In: Falk D, Gibson (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge, pp 257–289CrossRefGoogle Scholar
  128. Semendeferi K, Damasio H (2000) The brain and its main anatomical subdivisions in living hominoids using magnetic imaging. J Hum Evol 38: 317–332PubMedCrossRefGoogle Scholar
  129. Semendeferi K, Damasio H, Frank R, Van Hoesen GW (1997) The evolution of the frontal lobes: A volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32: 375–388PubMedCrossRefGoogle Scholar
  130. Semendeferi K, Armstrong A, Schleicher A, Zilles K, Van Hoesen GW (1998) Limbic frontal cortex in hominoids: A comparative study of area 13. Am J Phys Anthropol 106: 129–155PubMedCrossRefGoogle Scholar
  131. Semendeferi K, Armstrong E, Schleicher A, Zilles K, Van Hoesen GW (2001) Prefrontal cortex in humans and apes: A comparative study of area 10. Am J Phys Anthropol 114: 224–241PubMedCrossRefGoogle Scholar
  132. Semendeferi K, Lu A, Schenker N, Damasio H (2002) Humans and great apes share a large frontal cortex. Nat Neurosci 5: 272–276PubMedCrossRefGoogle Scholar
  133. Sherwood CC, Broadfield DC, Holloway RL, Ganon PJ, Hof PR (2003) Variability of Broca's area homologue in African great apes: Implications for language evolution. Anat Rec 271A: 276–285CrossRefGoogle Scholar
  134. Spoor F, Jeffery N, Zonneveld F (2000) Using diagnostic radiology in human evolutionary studies. J Anat 197: 61–76PubMedCentralPubMedCrossRefGoogle Scholar
  135. Stephan H (1972) Evolution of primate brains: A comparative anatomical investigation. In: Tuttle R (ed) Evolutionary biology of primates. Aldine, Chicago, pp 55–174Google Scholar
  136. Stephan H, Bauchot R, Andy OJ (1970) Data on size of the brain and of various brain parts in insectivores and primates. In: Noback CR, Montagna W (eds) Advances in primatology. Vol 1: The primate brain. Appleton-Century-Crofts, New York, pp 289–297Google Scholar
  137. Swisher C, Curtis G, et al (1994) Age of the earliest known hominids in Java, Indonesia. Science 263: 1118–1121PubMedCrossRefGoogle Scholar
  138. Vekua A, Lordkipanidze D, Rightmire GP, Agusti J, Ferring R, Maisuradze G, Mouskhelishvili A, Nioradze M, Ponce de Leon M, Tappen M, Tvalchrelidze M, Zollikofer C (2002) A new skull of early homo from Dmanisi, Georgia. Science 297: 85–89PubMedCrossRefGoogle Scholar
  139. von Bonin G (1949) Architecture of the precentral motor cortex and some adjacent areas. In: Bucy PC (ed) The precentral motor cortex. University of Illinois Press, Urbana-Champaign, pp 7–82Google Scholar
  140. Walker A, Leakey R (1993) The Nariokotome Homo erectus skeleton. Harvard University Press, CambridgeCrossRefGoogle Scholar
  141. Walker A, Falk D, Smith R, Pickford M (1983) The skull of Proconsul africanus; reconstruction and cranial capacity. Nature 305: 525–527CrossRefGoogle Scholar
  142. Walker AC, Leakey RE, Harris JM, Brown FH (1986) 2.5-Myr Australopithecus boisei from west of Lake Turkana, Kenya. Nature 322: 517–522CrossRefGoogle Scholar
  143. Weidenreich F (1943) The skull of Sinanthropus pekinensis: A comparative study on a primitive hominid skull. Paleontol Sin, ns D 10: 1–485Google Scholar
  144. Wood B, Collard M (1999) The human genus. Science 284: 65–71PubMedCrossRefGoogle Scholar
  145. Wu X, Schepartz LA, Falk D, Liu W (2005) Endocranial cast of Hexian Homo erectus from South China. Am J Phys Anthropol, under reviewGoogle Scholar
  146. Zilles K, Armstrong E, Schlaug G, Schleicher A (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253: 514–524PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2007

Authors and Affiliations

  • Dean Falk

There are no affiliations available

Personalised recommendations