Advertisement

1 Primate Origins and Supraordinal Relationships: Morphological Evidence

  • Mary T. Silcox
  • Eric J. Sargis
  • Jonathan I. Bloch
  • Doug M. Boyer
Reference work entry

Abstract

There are five major scenarios that have been advanced to account for the early events in the origination of the order Primates: a transition from terrestriality to arboreality, the adoption of a grasp-leaping mode of locomotion, the evolution of features for visual predation, an adaptation to terminal branch feeding occurring during angiosperm diversification, or a combination involving terminal branch feeding followed by visual predation. These hypotheses are assessed using both neontological and fossil data. Of the five scenarios, the angiosperm diversification hypothesis is not contradicted by modern data and is found to be the most consistent with the fossil record. In particular, the evolution of features for manual grasping and dental processing of fruit in the earliest primates (primitive plesiadapiforms), and the subsequent development of features for better grasping and more intense frugivory in the common ancestor of Euprimates and Plesiadapoidea, is consistent with a close relationship between early primate and angiosperm evolution. All the other scenarios are less consistent with the pattern of trait acquisition through time observed in the fossil record. Consideration of non-euprimates (e.g., scandentians and plesiadapiforms) is found to be essential to viewing primate origins as an evolutionary process rather than as an event.

Keywords

Fossil Record Terminal Branch Primate Origin Order Primate Visual Predation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Our thanks to P.D. Gingerich, K.D. Rose, F.S. Szalay, A.C. Walker, and J.G. Fleagle for conversations relevant to this chapter. We thank Annette Zitzmann for providing the photo of Ptilocercus in Figure 1.1 . Research was funded by grants from NSERC, Wenner-Gren, the Paleobiological Fund, Sigma Xi, NSF (SBR-9815884), and the University of Winnipeg to MTS; NSF (BCS-0129601) to G.F. Gunnell, P.D. Gingerich, and JIB; NSF (SBR-9616194), Field Museum of Natural History, Sigma Xi, and the Yale University Social Science Faculty Research Fund to EJS; 2002 NSFGRF to DMB.

References

  1. Adkins RM, Honeycutt RL (1991) Molecular phylogeny of the superorder Archonta. Proc Natl Acad Sci USA 88: 10317–10321PubMedCentralPubMedCrossRefGoogle Scholar
  2. Allman J (1977) Evolution of the visual system in the early primates. Prog Psychobiol Physiol Psychol 7: 1–53Google Scholar
  3. Anemone RL, Covert HH (2000) New skeletal remains of Omomys (Primates, Omomyidae): functional morphology of the hindlimb and locomotor behavior of a middle Eocene primate. J Hum Evol 38: 300–328CrossRefGoogle Scholar
  4. Beard KC (1989). Postcranial anatomy, locomotor adaptations, and paleoecology of Early Cenozoic Plesiadapidae, Paromomyidae, and Micromomyidae (Eutheria, Dermoptera). Ph.D. dissertation, Johns Hopkins University School of Medicine, Baltimore MarylandGoogle Scholar
  5. Beard KC (1990) Gliding behavior and palaeoecology of the alleged primate family Paromomyidae (Mammalia, Dermoptera). Nature 345: 340–341CrossRefGoogle Scholar
  6. Beard KC (1993a) Phylogenetic systematics of the Primatomorpha, with special reference to Dermoptera. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: placentals. Springer-Verlag, New York, pp 129–150CrossRefGoogle Scholar
  7. Beard KC (1993b) Origin and evolution of gliding in Early Cenozoic Dermoptera (Mammalia, Primatomorpha). In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 63–90CrossRefGoogle Scholar
  8. Beard KC (1998) East of Eden: Asia as an important center of taxonomic origination in mammalian evolution. In: Beard KC, Dawson MR (eds) Dawn of the age of mammals in Asia. Bull Carnegie Mus Nat Hist 34: 5–39Google Scholar
  9. Beard KC, Wang J (1995) The first Asian plesiadapoids (Mammalia: Primatomorpha). Ann Carnegie Mus 64: 1–33Google Scholar
  10. Biknevicius AR (1986) Dental function and diet in the Carpolestidae (Primates, Plesiadapiformes). Am J Phys Anthropol 71: 157–171PubMedCrossRefGoogle Scholar
  11. Bloch JI, Boyer DM (2002) Grasping primate origins. Science 298: 1606–1610PubMedCrossRefGoogle Scholar
  12. Bloch JI, Boyer DM (2003) Response to comment on “Grasping primate origins”. Science 300: 741cCrossRefGoogle Scholar
  13. Bloch JI, Boyer DM (in press) New skeletons of Paleocene-Eocene Plesiadapiformes: a diversity of arboreal positional behaviors in early primates. In: Ravosa MJ, Dagosto M (eds) Primate origins and adaptations: a multidisciplinary perspective. Plenum Press, New YorkGoogle Scholar
  14. Bloch JI, Silcox MT (2001) New basicrania of Paleocene-Eocene Ignacius: re-evaluation of the plesiadapiform-dermopteran link. Am J Phys Anthropol 116: 184–198PubMedCrossRefGoogle Scholar
  15. Bloch JI, Silcox MT (2003) Comparative cranial anatomy and cladistic analysis of Paleocene primate Carpolestes simpsoni using ultra high resolution X-ray computed tomography. Am J Phys Anthropol 120(S1): 68Google Scholar
  16. Bloch JI, Silcox MT (2006) Cranial anatomy and relationships of Paleocene plesiadapiform Carpolestes simpsoni (Mammalia, Primates) using ultra high-resolution X-ray computed tomography. J Hum Evol 50: 1–35Google Scholar
  17. Bloch JI, Silcox MT, Sargis EJ (2002) Origin and relationships of Archonta (Mammalia, Eutheria): re-evaluation of Eudermoptera and Primatomorpha. J Vert Paleontol 22(Suppl. to 3): 37ACrossRefGoogle Scholar
  18. Bloch JI, Boyer DM, Houde P (2003) New skeletons of Paleocene-Eocene micromomyids (Mammalia, Primates): functional morphology and implications for euarchontan relationships. J Vert Paleontol 23(Suppl. to 3): 35AGoogle Scholar
  19. Bloch JI, Silcox MT, Boyer DM, Sargis EJ (submitted) New Palaeocene skeletons root the primate treeGoogle Scholar
  20. Boyer DM, Bloch JI, Gingerich PD (2001) New skeletons of Paleocene paromomyids (Mammalia, ?Primates): were they mitten gliders? J Vert Paleontol 21(Suppl. to 3): 35AGoogle Scholar
  21. Boyer DM, Bloch JI, Silcox MT, Gingerich PD (2004) New observations on the anatomy of Nannodectes (Mammalia, Primates) from the Paleocene of Montana and Colorado. J Vert Paleontol 24(Suppl. to 3): 40AGoogle Scholar
  22. Butler PM (1972) The problem of insectivore classification. In: Joysey KA, Kemp TS (eds) Studies in vertebrate evolution. Oliver and Boyd, Edinburgh, pp 253–265Google Scholar
  23. Carlsson A (1922) Über die Tupaiidae und ihre Beziehungen zu den Insectivora und den Prosimiae. Acta Zool 3: 227–270CrossRefGoogle Scholar
  24. Cartmill M(1970)The orbits of arboreal mammals: a reassessment of the arboreal theory of primate evolution. Ph.D. dissertation. University of Chicago, Chicago IllinoisGoogle Scholar
  25. Cartmill M (1972) Arboreal adaptations and the origin of the order Primates. In: Tuttle R (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 97–122Google Scholar
  26. Cartmill M (1974) Rethinking primate origins. Science 184: 436–443PubMedCrossRefGoogle Scholar
  27. Cartmill M (1992) New views on primate origins. Evol Anthrop 1: 105–111CrossRefGoogle Scholar
  28. Cartmill M (1993) A view to a death in the morning: hunting and nature through history. Harvard University Press, CambridgeGoogle Scholar
  29. Crompton RH (1995) “Visual predation,” habitat structure, and the ancestral primate niche. In: Alterman L, Doyle GA, Izard MK (eds) Creatures of the dark: the nocturnal prosimians. Plenum Press, New York, pp 11–30CrossRefGoogle Scholar
  30. Dagosto M (1988) Implications of postcranial evidence for the origin of euprimates. J Hum Evol 17: 35–56CrossRefGoogle Scholar
  31. De Queiroz K, Gauthier J (1990) Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Syst Zool 39: 307–322CrossRefGoogle Scholar
  32. Ducrocq S, Buffetaut E, Buffetaut-Tong H, Jaeger J-J, Jongkanjanasoontorn Y, Suteethorn Y (1992) First fossil flying lemur: a dermopteran from the Late Eocene of Thailand. Palaeontol 35: 373–380Google Scholar
  33. Fleagle JG (1999) Primate adaptation and evolution, vol. 2. Academic Press, San DiegoGoogle Scholar
  34. Fox RC (1991) Saxonella (Plesiadapiformes: ?Primates) in North America: S. naylori, sp. nov., from the late Paleocene of Alberta, Canada. J Vert Paleontol 11: 334–349CrossRefGoogle Scholar
  35. Franzen JL, Wilde V (2003) First gut content of a fossil primate. J Hum Evol 44: 373–378PubMedCrossRefGoogle Scholar
  36. Fu J-F, Wang J-W, Tong Y-S (2002) The new discovery of the Plesiadapiformes from the early Eocene of Wutu Basin, Shandong Province. Vert PalAsiat 40: 219–227Google Scholar
  37. Garber P (1980) Locomotor behavior and feeding ecology of the Panamanian tamarin (Saguinus oedipus geoffroyi, Callitrichidae, Primates). Int J Primatol 1: 185–201CrossRefGoogle Scholar
  38. Gheerbrant E, Sudre J, Sen S, Abrial C, Marandat B, Sigé B, Vianey-Liaud M (1998) Nouvelles données sur les mammifères du Thanetien et de l'Ypresien du Bassin d'Ouarzazate (Maroc) et leur contexte stratigraphique. Palaeovertebrata 27: 155–202Google Scholar
  39. Gidley JW (1923) Paleocene primates of the Fort Union, with discussion of relationships of Eocene primates. Proc US Natl Mus 63: 1–38CrossRefGoogle Scholar
  40. Gingerich PD (1976) Cranial anatomy and evolution of early Tertiary Plesiadapidae (Mammalia, Primates). Univ Mich Pap Palaeontol 15: 1–141Google Scholar
  41. Gingerich PD, Gunnell GF (1992) A new skeleton of Plesiadapis cookei. The Display Case 6: 1–2Google Scholar
  42. Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27: 1–524Google Scholar
  43. Gunnell GF, Morgan ME, Maas MC, Gingerich PD (1995) Comparative paleoecology of Paleogene and Neogene mammalian faunas: trophic structure and composition. Palaeogeogr Palaeoclimatol Palaeoecol 115: 265–286CrossRefGoogle Scholar
  44. Hamrick MW, Rosenman BA, Brush JA (1999) Phalangeal morphology of the Paromomyidae (?Primates, Plesiadapiformes): the evidence for gliding behavior reconsidered. Am J Phys Anthropol 109: 397–413PubMedCrossRefGoogle Scholar
  45. Heesy C, Ross C (2004) The nocturnal origin of the Order Primates. J Vert Paleontol 24(Suppl. to 3): 69AGoogle Scholar
  46. Hoffstetter R (1977) Phylogénie des primates. Bull Mém Soc Anthrop Paris t4, série XIII: 327–346CrossRefGoogle Scholar
  47. Hooker JJ (2001) Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zool J Linn Soc 132: 501–529CrossRefGoogle Scholar
  48. Johnston PA, Fox RC (1984) Paleocene and late Cretaceous mammals from Saskatchewan, Canada. Palaeontographica Abt A 186: 163–222Google Scholar
  49. Kay RF (2003) The primate fossil record. Am J Hum Biol 15: 839–840CrossRefGoogle Scholar
  50. Kay RF, Cartmill M (1977) Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, ?Primates), with a description of a new genus and species. J Hum Evol 6: 19–53CrossRefGoogle Scholar
  51. Kay RF, Thorington RW Jr, Houde P (1990) Eocene plesiadapiform shows affinities with flying lemurs not primates. Nature 345: 342–344CrossRefGoogle Scholar
  52. Kay RF, Thewissen JGM, Yoder AD (1992) Cranial anatomy of Ignacius graybullianus and the affinities of the Plesiadapiformes. Am J Phys Anthrop 89: 477–498CrossRefGoogle Scholar
  53. Kirk EC, Cartmill M, Kay RF, Lemelin P (2003) Comment on “Grasping Primate Origins”. Science 300: 741PubMedCrossRefGoogle Scholar
  54. Krause DW (1991) Were paromomyids gliders? Maybe, maybe not. J Hum Evol 21: 177–188CrossRefGoogle Scholar
  55. Le Gros Clark WE (1925) On the skull of Tupaia. Proc Zool Soc Lond 1925: 559–567Google Scholar
  56. Le Gros Clark WE (1926) On the anatomy of the pen–tailed tree shrew (Ptilocercus lowii). Proc Zool Soc Lond 1926: 1179–1309CrossRefGoogle Scholar
  57. Le Gros Clark WE (1959) The antecedents of Man. Quadrangle Books, ChicagoGoogle Scholar
  58. Lewin R (1987) Bones of contention. Simon and Schuster, New YorkGoogle Scholar
  59. Liu F-GR, Miyamoto MM, Freire NP, Ong PQ, Tennant MR, Young TS, Gugel KF (2001) Molecular and morphological supertrees for eutherian (placental) mammals. Science 291: 1786–1789PubMedCrossRefGoogle Scholar
  60. Lofgren DL (1995) The Bug Creek problem and the Cretaceous-Tertiary boundary at McGuire Creek, Montana. Univ Calif Publ Geol Sci 140: 1–185Google Scholar
  61. MacPhee RDE, Cartmill M, Gingerich PD (1983) New Paleogene primate basicrania and the definition of the order Primates. Nature 301: 509–511PubMedCrossRefGoogle Scholar
  62. Martin RD (1968) Towards a new definition of Primates. Man 3: 377–401CrossRefGoogle Scholar
  63. Martin RD (1986) Primates: a definition. In: Wood B, Martin L, Andrews P (eds) Major topics in primate and human evolution. Cambridge University Press, Cambridge, pp 1–31Google Scholar
  64. Martin RD (1990) Primate origins and evolution: a phylogenetic reconstruction. Princeton University Press, Princeton NJGoogle Scholar
  65. Martin RM (2004) Chinese lantern for early primates. Nature 427: 22–23PubMedCrossRefGoogle Scholar
  66. Matthew WD, Granger W (1921) New genera of Paleocene mammals. Am Mus Novit 13: 1–7Google Scholar
  67. McHenry HM, Coffing K (2000) Australopithecus to Homo: transformations in body and mind. Annu Rev Anthropol 29: 125–146CrossRefGoogle Scholar
  68. McKenna MC (1966) Paleontology and the origin of the Primates. Folia Primatol 4: 1–25PubMedCrossRefGoogle Scholar
  69. McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the Primates. Plenum Press, New York, pp 21–46CrossRefGoogle Scholar
  70. McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New YorkGoogle Scholar
  71. Mivart G St (1873) On Lepilemur and Cheirogaleus, and on the zoological rank of the Lemuroidea. Proc Zool Soc Lond 1873: 484–510Google Scholar
  72. Miyamoto MM, Porter CA, Goodman M (2000) c-Myc gene sequences and the phylogeny of bats and other eutherian mammals. Syst Biol 49: 501–514PubMedCrossRefGoogle Scholar
  73. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ (2001a) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618PubMedCrossRefGoogle Scholar
  74. Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling EC, Ryder OA, Stanhope MJ, de Jong WW, Springer MS (2001b) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351PubMedCrossRefGoogle Scholar
  75. Napier JR, Napier PH (1967) A handbook of living primates. Academic Press, LondonGoogle Scholar
  76. Niemitz C (1979) Outline of the behavior of Tarsius bancanus. In: Doyle GA, Martin RD (eds) The study of prosimian behavior. Academic Press, New York, pp 631–660Google Scholar
  77. Ni X, Wang Y, Hu Y, Li C (2004) A euprimate skull from the early Eocene of China. Nature 427: 65–68PubMedCrossRefGoogle Scholar
  78. Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356: 121–125PubMedCrossRefGoogle Scholar
  79. Novacek MJ, Wyss AR (1986) Higher-level relationships of the recent eutherian orders: morphological evidence. Cladistics 2: 257–287CrossRefGoogle Scholar
  80. Olson LE, Sargis EJ, Martin RD (2004) Phylogenetic relationships among treeshrews (Scandentia): a review and critique of the morphological evidence. J Mamm Evol 11: 49–71CrossRefGoogle Scholar
  81. Olson LE, Sargis EJ, Martin RD (2005) Intraordinal phylogenetics of treeshrews (Mammalia: Scandentia) based on evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 35: 656–673PubMedCrossRefGoogle Scholar
  82. Pumo DE, Finamore PS, Franek WR, Phillips CJ, Tarzami S, Balzarano D (1998) Complete mitochondrial genome of a neotropical fruit bat, Artibeus jamaicensis and a new hypothesis of the relationships of bats to other eutherian mammals. J Mol Evol 47: 709–717PubMedCrossRefGoogle Scholar
  83. Rasmussen DT (1990) Primate origins: lessons from a neotropical marsupial. Am J Primatol 22: 263–277CrossRefGoogle Scholar
  84. Ravosa MJ, Savakova DG (2004) Euprimate origins: the eyes have it. J Hum Evol 46: 355–362CrossRefGoogle Scholar
  85. Rose KD (1981) The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ Mich Mus Pap Paleontol 26: 1–197Google Scholar
  86. Rose KD (1995) The earliest primates. Evol Anthropol 3: 159–173CrossRefGoogle Scholar
  87. Rose KD, Walker AC (1985) The skeleton of early Eocene Cantius, oldest lemuriform primate. Am J Phys Anthropol 66: 73–89PubMedCrossRefGoogle Scholar
  88. Rowe T (1987) Definition and diagnosis in the phylogenetic system. Syst Zool 36: 208–211CrossRefGoogle Scholar
  89. Runestad JA, Ruff CB (1995) Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids. Am J Phys Anthropol 98: 101–119PubMedCrossRefGoogle Scholar
  90. Russell DE (1964) Les mammifères Paléocène d'Europe. Mém Mus Hist nat nouvelle série 13: 1–324Google Scholar
  91. Sargis EJ (2001a) A preliminary qualitative analysis of the axial skeleton of tupaiids (Mammalia, Scandentia): functional morphology and phylogenetic implications. J Zool Lond 253: 473–483CrossRefGoogle Scholar
  92. Sargis EJ (2001b) The grasping behaviour, locomotion and substrate use of the tree shrews Tupaia minor and T. tana (Mammalia, Scandentia). J Zool Lond 253: 485–490CrossRefGoogle Scholar
  93. Sargis EJ (2002a) Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253: 10–42PubMedCrossRefGoogle Scholar
  94. Sargis EJ (2002b) Functional morphology of the hindlimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 254: 149–185PubMedCrossRefGoogle Scholar
  95. Sargis EJ (2002c) A multivariate analysis of the postcranium of tree shrews (Scandentia, Tupaiidae) and its taxonomic implications. Mammalia 66: 579–598CrossRefGoogle Scholar
  96. Sargis EJ (2002d) The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae): an analysis of primatomorphan and volitantian characters. J Mamm Evol 9: 137–160CrossRefGoogle Scholar
  97. Sargis EJ (2002e) Primate origins nailed. Science 298: 1564–1565PubMedCrossRefGoogle Scholar
  98. Sargis EJ (2004) New views on tree shrews: the role of tupaiids in primate supraordinal relationships. Evol Anthropol 13: 56–66CrossRefGoogle Scholar
  99. Sargis EJ (in press) The postcranial morphology of Ptilocercus lowii (Scandentia, Tupaiidae) and its implications for primate supraordinal relationships. In: Ravosa MJ, Dagosto M (eds) Primate origins and adaptations: a multidisciplinary perspective. Plenum Press, New YorkGoogle Scholar
  100. Sigé B, Jaeger J-J, Sudre J, Vianey-Liaud M (1990) Altiatlasius koulchii n. gen et sp., primate omomyidé du paléocène supérieur du Maroc, et les origines des euprimates. Palaeontographica 212: 1–24Google Scholar
  101. Silcox MT (2001) A phylogenetic analysis of Plesiadapiformes and their relationship to Euprimates and other archontans. Ph.D. dissertation, Johns Hopkins School of Medicine, Baltimore MarylandGoogle Scholar
  102. Silcox MT (2003) New discoveries on the middle ear anatomy of Ignacius graybullianus (Paromomyidae, Primates) from ultra high resolution X-ray computed tomography. JHum Evol 44: 73–86CrossRefGoogle Scholar
  103. Silcox MT (in press) Primate taxonomy, plesiadapiforms, and approaches to primate origins. In: Ravosa MJ, Dagosto M (eds) Primate origins and adaptations: a multidisciplinary perspective. Plenum Press, New YorkGoogle Scholar
  104. Silcox MT, Gunnell GF (in press) Plesiadapiformes. In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution of tertiary mammals of North America. Vol 2: Marine mammals and smaller terrestrial mammals. Cambridge University Press, CambridgeGoogle Scholar
  105. Silcox MT, Bloch JI, Sargis EJ, Boyer DM (2005) Euarchonta (Dermoptera, Scandentia, Primates). In: Rose KD, Archibald JD (eds) The rise of placental mammals: origins and relationships of the major extant clades. Johns Hopkins University Press, BaltimoreGoogle Scholar
  106. Simmons NB (1994) The case for chiropteran monophyly. Am Mus Novit 3103: 1–54Google Scholar
  107. Smith T, Van Itterbeeck J, Missiaen P (2004) Oldest plesiadapiform (Mammalia, Proprimates) from Asia and its palaeobiogeographical implications for faunal interchange with North America. CR Palevol 3: 43–52CrossRefGoogle Scholar
  108. Springer MS, Murphy WJ, Eizirik E, O'Brien SJ (2003) Placental mammal diversification and the Cretaceous–Tertiary boundary. Proc Natl Acad Sci USA 100: 1056–1061PubMedCentralPubMedCrossRefGoogle Scholar
  109. Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19: 430–438PubMedCrossRefGoogle Scholar
  110. Stafford BJ, Thorington RW Jr (1998) Carpal development and morphology in archontan mammals. J Morphol 235: 135–155PubMedCrossRefGoogle Scholar
  111. Stafford BJ, Szalay FS (2000) Craniodental functional morphology and taxonomy of dermopterans. J Mammal 81: 360–385CrossRefGoogle Scholar
  112. Storch G, Richter G (1994) Zur Paläobiologie Messeler Igel. Natur u. Museum 124: 81–90Google Scholar
  113. Strait SG (2001) Dietary reconstruction of small-bodied omomyoid primates. J Vert Palaeontol 21: 322–334CrossRefGoogle Scholar
  114. Sussman RW (1991) Primate origins and the evolution of angiosperms. Am J Primatol 23: 209–223CrossRefGoogle Scholar
  115. Sussman RW, Raven RH (1978) Pollination of flowering plants by lemurs and marsupials: a surviving archaic coevolutionary system. Science 200: 731–736PubMedCrossRefGoogle Scholar
  116. Szalay FS (1968) The beginnings of primates. Evolution 22: 19–36CrossRefGoogle Scholar
  117. Szalay FS (1969) Mixodectidae, Microsyopidae, and the insectivore-primate transition. Bull Am Mus Nat Hist 140: 195–330Google Scholar
  118. Szalay FS (1972) Paleobiology of the earliest primates. In: Tuttle RH (ed) The functional and evolutionary biology of primates. Aldine-Atherton, Chicago, pp 3–35Google Scholar
  119. Szalay FS (1975) Where to draw the nonprimate-primate taxonomic boundary. Folia Primatol 23: 158–163PubMedCrossRefGoogle Scholar
  120. Szalay FS (1977) Phylogenetic relationships and a classification of the eutherian Mammalia. In: Hecht MK, Goody PC, Hecht BM (eds) Major patterns in vertebrate evolution. Plenum Press, New York, pp 315–374CrossRefGoogle Scholar
  121. Szalay FS (1981) Phylogeny and the problem of adaptive significance: the case of the earliest primates. Folia Primatol 36: 157–182PubMedCrossRefGoogle Scholar
  122. Szalay FS, Dagosto M (1980) Locomotor adaptations as reflected on the humerus of Paleogene Primates. Folia Primatol 34: 1–45PubMedCrossRefGoogle Scholar
  123. Szalay FS, Dagosto M (1988) Evolution of hallucial grasping in primates. J Hum Evol 17: 1–33CrossRefGoogle Scholar
  124. Szalay FS, Decker RL (1974) Origins, evolution, and function of the tarsus in late Cretaceous Eutheria and paleocene primates In: Jenkins FA Jr (eds) Primate locomotion. Academic Press, New York, pp 223–359Google Scholar
  125. Szalay FS, Delson E (1979) Evolutionary history of the primates. Academic Press, New YorkGoogle Scholar
  126. Szalay FS, Drawhorn G (1980) Evolution and diversification of the Archonta in an arboreal milieu. In: Luckett WP (ed) Comparative biology and evolutionary relationships of tree shrews. Plenum Press, New York, pp 133–169CrossRefGoogle Scholar
  127. Szalay FS, Lucas SG (1993) Cranioskeletal morphology of archontans, and diagnoses of Chiroptera, Volitantia, and Archonta. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 187–226CrossRefGoogle Scholar
  128. Szalay FS, Lucas SG (1996) The postcranial morphology of Paleocene Chriacus and Mixodectes and the phylogenetic relationships of archontan mammals. Bull New Mex Mus Nat Hist Sci 7: 1–47Google Scholar
  129. Szalay FS, Tattersall I, Decker RL (1975) Phylogenetic relationships of Plesiadapis: postcranial evidence. In: Szalay FS (ed) Approaches to primate paleobiology. Karger, Basel, pp 136–166Google Scholar
  130. Szalay FS, Rosenberger AL, Dagosto M (1987) Diagnosis and differentiation of the order Primates. Yrbk Phys Anthropol 30: 75–105CrossRefGoogle Scholar
  131. Tabuce R, Mahboubi M, Tafforeau P, Sudre J (2004) Discovery of a highly-specialized plesiadapiform primate in the early-middle Eocene of northwestern Africa. J Hum Evol 47: 305–321PubMedCrossRefGoogle Scholar
  132. Tong Y (1988) Fossil tree shrews from the Eocene Hetaoyuan formation of Xichuan, Henan. Vert PalAsiat 26: 214–220Google Scholar
  133. Van Valen LM (1994) The origin of the plesiadapid primates and the nature of Purgatorius. Evol Monogr 15: 1–79Google Scholar
  134. Van Valen LM, Sloan RE (1965) The earliest primates. Science 150: 743–745PubMedCrossRefGoogle Scholar
  135. Waddell PJ, Okada N, Hasegawa M (1999) Towards resolving the interordinal relationships of placental mammals. Syst Biol 48: 1–5PubMedCrossRefGoogle Scholar
  136. Wible JR (1993) Cranial circulation and relationships of the colugo Cynocephalus (Dermoptera, Mammalia). Am Mus Novit 3072: 1–27Google Scholar
  137. Wible JR, Covert HH (1987) Primates: cladistic diagnosis and relationships. J Hum Evol 16: 1–22CrossRefGoogle Scholar
  138. Wible JR, Martin JR (1993) Ontogeny of the tympanic floor and roof in archontans. In: MacPhee RDE (ed) Primates and their relatives in phylogenetic perspective. Plenum Press, New York, pp 111–146CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2007

Authors and Affiliations

  • Mary T. Silcox
  • Eric J. Sargis
  • Jonathan I. Bloch
  • Doug M. Boyer

There are no affiliations available

Personalised recommendations