Advertisement

27 Computer-Based Reconstruction: Technical Aspects and Applications

  • Lilian Ulhaas
Reference work entry

Abstract

Reconstruction plays a crucial part in working with fossils. A new aspect of reconstruction has been introduced by recent advances in 3D technology: the digital reconstruction of real objects. With the assistance of various computer-based techniques, such as surface scanning or computed tomography (CT), digital object data can be acquired and processed. Computer-based methods have in common that they are nondestructive as the handling of the fossil takes place within the computerized environment only. This aspect alone is of great advantage in comparison to conventional reconstruction and measuring techniques. Additionally, when reconstructing a fossil digitally, all steps are comprehensible and can be reversed.

With the assistance of a new methodological inventory, much additional information can now be derived from fossil specimens. Medical imaging techniques enable the visualization of internal morphological structures, formerly inaccessible for morphometric and biomechanical analysis. Furthermore, quantitative computer-based measurements are reproducible, as all measuring points on the digital objects can be saved.

This chapter gives a brief introduction to state-of-the-art techniques for 3D data acquisition and computer-based data analysis. Some applications in paleoanthropological research are presented to demonstrate that 3D technology has become an indispensable tool, complementing classical methods in physical anthropology.

Keywords

Semicircular Canal Compute Tomography Number Geometric Morphometrics Pattern Projection Surface Scanning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank all of my colleagues who always tried to answer my questions concerning the amazing techniques available today. Special thanks to Bernhard Illerhaus, Anthony Olejniczak, Friedemann Schrenk, and Fred Spoor for providing figures to illustrate some applications.

References

  1. Aiello L, Wood B, Key C, Wood C (1998) Laser scanning and palaeoanthropology: an example from Olduvai Gorge, Tanzania. In: Strasser E, Fleagle J, Rosenberger A, McHenry H (eds) Primate locomotion: recent advances. Plenum Press, New York, pp 223–236CrossRefGoogle Scholar
  2. Baab KL, Ting TD, Capellini TD, Hagell SE, Delson E (2003) Precision in 3-D landmark data collection for geometric morphometrics. Am J Phys Anthropol Suppl 36: 61–62Google Scholar
  3. Beraldin JA, Blais F, Cournoyer L, Godin G, Rioux M (2000) Active 3D sensing. In: Modelli e metodi per lo studio e la conservazione dell'architettura storica. Scuola Normale Superiore Pisa, Quaderni 10, pp 22–46Google Scholar
  4. Blais F, Beraldin JA, El-Hakim S, Godin G (2003) New development in 3D laser scanners: from static to dynamic multimodal systems. NRC 45884Google Scholar
  5. Bookstein F, Schaefer K, Prossinger H, Seidler H, Fieder M, Stringer C, Weber GW, Arsuaga JL, Slice D, Rohlf F, Recheis W, Mariam J, Marcus L (1999) Comparing frontal cranial profiles in archaic and modern homo by morphometric analysis. Anat Rec 257: 217–224PubMedCrossRefGoogle Scholar
  6. Bookstein F, Gunz P, Mitteroecker P, Prossinger H, Schaefer K, Seidler H (2003) Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J Hum Evol 44: 167–187PubMedCrossRefGoogle Scholar
  7. Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, CambridgeGoogle Scholar
  8. Bresenham J, Jacobs P, Sadler L, Stucki P (1993) Real virtuality: stereolithography – rapid prototyping in 3-D. Proc SIGGRAPH, Computer Graphics. Ann Conf Ser 377–378Google Scholar
  9. Breuckmann B (1993) Bildverarbeitung und optische Meßtechnik in der industriellen Praxis. Franzis, MünchenGoogle Scholar
  10. Conroy GC (1991) Enamel thickness in South African australopithecines: non-invasive evaluation by computed tomography. Palaeont Afr 28: 53–59Google Scholar
  11. Conroy GC, Vannier MW (1984) Noninvasive three-dimensional computer imaging of matrix-filled fossil skulls by high-resolution computed tomography. Nature 226: 456–458Google Scholar
  12. Conroy GC, Vannier MW (1985) Endocranial volume determination of matrix-filled fossil skulls using high resolution computed tomography. In: Tobias PV (ed) Hominid evolution: past, present and future. Alan R. Liss, Inc., New York, pp 419–426Google Scholar
  13. Conroy GC, Vannier MW (1986) Three-dimensional computer imaging: some anthropological applications. In: Else JG, Lee PC (eds) Primate evolution. Cambridge University Press, Cambridge, pp 211–222Google Scholar
  14. Conroy GC, Weber GW, Seidler H, Recheis W, zur Nedden D, Mariam JH (2000) Endocranial capacity of the Bodo cranium determined from three-dimensional computed tomography. Am J Phys Anthropol 113: 111–118PubMedCrossRefGoogle Scholar
  15. Conroy GC, Weber GW, Seidler H, Tobias PV, Kane A, Brunsden B (1998) Endocranial capacity in an early hominid cranium from Sterkfontein, South Africa. Science 280: 1730–1731PubMedCrossRefGoogle Scholar
  16. Dean D (1996) Three-dimensional data capture and visualization. In: Marcus LF, Corti M, Loy A, Nayler GJP, Slice DE (eds) Advances in morphometrics. Plenum Press, New York, pp 53–69CrossRefGoogle Scholar
  17. Delson E, Harvati K, Reddy D, Marcus LF, Mowbray K, Sawyer GJ, Jacob T, Márquez S (2001) The Sambungmacan 3 Homo erectus Calvaria: a comparative morphometric and morphological analysis. Anat Rec 262: 380–397PubMedCrossRefGoogle Scholar
  18. Edelstein WA, Hutchinson JMS, Johnson G, Redpath T (1980) Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol 25: 751–756PubMedCrossRefGoogle Scholar
  19. Falk D, Redmond JC, Guyer J, Conroy GC, Recheis W, Weber GW, Seidler H (2000) Early hominid brain evolution: a new look at old endocasts. J Hum Evol 38: 695–717PubMedCrossRefGoogle Scholar
  20. Foley JD, van Dam A, Feiner SK, Hughes JF (1990) Computer graphics: principles and practice. Addison Wesley, ReadingGoogle Scholar
  21. Friess M, Marcus LF, Reddy DP, Delson E (2002) The use of laser scanning techniques for the morphometric analysis of human facial shape variation. BAR Int Ser 1049: 31–35Google Scholar
  22. Gantt DG (1976) Enamel thickness: its significance and possible phyletic implications. Am J Phys Anthropol 44: 179–180Google Scholar
  23. Gantt DG, Kappleman J, Ketcham RA, Alder ME, Deahl TH (2003) 3D approach to interpret enamel thickness and volume. Am J Phys Anthropol Suppl 36: 99Google Scholar
  24. Ghezal A, Stucki P (1992) 3D-Hartkopien als Alternative zur 3D-Visualisierung am Bildschirm. Informatik Forsch Entw 7: 121–125Google Scholar
  25. Godin G, Beraldin JA, Taylor J, Cournoyer L, Rioux M, El-Hakim S, Baribeau R, Blais F, Boulanger P, Domey J, Picard M (2002) Active optical 3D imaging for heritage applications. IEEE Comput Graphics Appl 22: 24–36CrossRefGoogle Scholar
  26. Gorjanovic-Kramberger D (1902) Der paläolithische Mensch und seine Zeitgenossen aus dem Diluvium von Krapina in Kroatien, II. Mitteilungen der Anthropologischen Gesellschaft in Wien 32: 189–216Google Scholar
  27. Gorjanovic-Kramberger D (1906) Der diluviale Mensch von Krapina in Kroatien. Kriedel, WiesbadenGoogle Scholar
  28. Grine FE (1991) Computed tomography and the measurement of enamel thickness in extant hominoids: implications for its paleontological application. Palaeont Afr 28: 61–69Google Scholar
  29. Harcourt-Smith WEH, Kim J, Delson E (2004) Estimating hominoid reciprocal joint congruence: a comparison of two morphometric techniques. Am J Phys Anthropol Suppl 38: 108–109Google Scholar
  30. Harvati K (2002) Models of shape variation between and within species and the Neanderthal taxonomic position: a 3D geometric morphometrics approach based on temporal bone morphology. BAR Int Ser 1049: 25–30Google Scholar
  31. Harvati K (2003a) The Neanderthal taxonomic position: models of intra- and inter-specific craniofacial variation. J Hum Evol 44: 107–132PubMedCrossRefGoogle Scholar
  32. Harvati K (2003b) Quantitative analysis of Neanderthal temporal bone morphology using 3-D geometric morphometrics. Am J Phys Anthropol 120: 323–338PubMedCrossRefGoogle Scholar
  33. Hemmy DC, Zonneveld F, Lobregt S, Fukuta K (1994) A decade of clinical three dimensional imaging: review. Part I. Historical development. Invest Radiol 29: 489–496PubMedCrossRefGoogle Scholar
  34. Hounsfield GN (1972) A method of and apparatus for examination of a body by radiation such as x-ray or gamma radiation. Patent specification 1283915. The Patent OfficeGoogle Scholar
  35. Hounsfield GN (1973) Computerized transverse axial scanning (tomography) I. Description of system. Br J Radiol 46: 1016–1022PubMedCrossRefGoogle Scholar
  36. Hoxter EA, Schenz A (1991) Röntgenaufnahmetechnik. Grundlagen und Anwendungen. Siemens AG, Berlin MunichGoogle Scholar
  37. Hublin JJ, Spoor F, Braun M, Zonneveld F, Condemi S (1996) A late Neanderthal associated with Upper Paleolithic artefacts. Nature 381: 224–226PubMedCrossRefGoogle Scholar
  38. Huettel SA, Song AW, McCarthy G (2004) Functional magnetic resonance imaging. Sinauer Associates, Sunderland MAGoogle Scholar
  39. Jeffery N, Spoor F (2002) Brain size and the human cranial base: a prenatal perspective. Am J Phys Anthropol 118: 324–340PubMedCrossRefGoogle Scholar
  40. Jend HH, Tödt HC (1989) Arbeitsbuch Computertomographie. Schnetztor/Byk Gulden Pharmazeutikon, KonstanzGoogle Scholar
  41. Kak AC, Slaney M (1999) Priciples of computerized tomographic imaging. IEEE Press, New YorkGoogle Scholar
  42. Kalvin AD, Dean D, Hublin JJ (1995) Reconstruction of human fossils. IEEE Comput Graphics Appl 15: 12–15CrossRefGoogle Scholar
  43. Kono RT (2004) Molar enamel thickness and distribution patterns in extant great apes and humans: new insights based on a 3-dimensional whole crown perspective. Anthropol Sci 112: 121–146CrossRefGoogle Scholar
  44. Kullmer O, Huck M, Engel K, Schrenk F, Bromage T (2002) Hominid tooth pattern database (hotpad) derived from optical 3D topometry. BAR Int Ser 1049: 71–82Google Scholar
  45. Kullmer O, Engel K, Huck M, Ulhaas L, Winzen O, Schrenk F (2004) Occlusal fingerprint analysis (OFA) quantifying individual wear pattern of tooth crowns using optical 3-D topometry. Am J Phys Anthropol Suppl 38: 130Google Scholar
  46. Kupczik K, Spoor F, Dean MC (2003) Tooth root morphology and masticatory muscle force pattern in humans and nonhuman primates. Am J Phys Anthropol Suppl 36: 134Google Scholar
  47. Lange S, Grumme T, Kluge W, Ringel K, Meese W (1988) Zerebrale und spinale Computertomographie. Karger, BaselGoogle Scholar
  48. Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242: 190–191CrossRefGoogle Scholar
  49. Lele S, Richtsmeier JT (1991) Euclidean distance matrix analysis: a coordinate free approach to comparing biological shapes using landmark data. Am J Phys Anthropol 98: 73–86CrossRefGoogle Scholar
  50. M'Kirera F, Ungar PS (2003) Occlusal relief changes with molar wear in Pan troglodytes troglodytes and Gorilla gorilla gorilla. Am J Primatol 60: 31–41PubMedCrossRefGoogle Scholar
  51. Macho GA, Thackeray JF (1992) Computed tomography and enamel thickness of maxillary molars of Plio-Pleistocene hominids from Sterkfontein, Swartkrans and Kromdraai (South Africa): an exploratory study. Am J Phys Anthropol 89: 133–143PubMedCrossRefGoogle Scholar
  52. Mansfield P, Morris PG (1982) NMR imaging in biomedicine. Academic Press, New YorkGoogle Scholar
  53. Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29: 355–373Google Scholar
  54. Mansfield P, Maudsley AA, Baines T (1976) Fast scan proton imaging by NMR. J Phys E: Sci Instrum 9: 271–278CrossRefGoogle Scholar
  55. Marcus LF, Frost S, Delson E (1997) Comparison of Polhemus 3Draw Pro and Microscribe 3DX. Biological morphometrics mailing list http://life.bio.sunysb.edu/netforum/morphmet/a/1
  56. Martin LB (1985) Significance of enamel thickness in hominoid evolution. Nature 314: 260–263PubMedCrossRefGoogle Scholar
  57. Mitteroecker P, Gunz P, Weber GW, Bookstein FL (2004b) Regional dissociated heterochrony in multivariate analysis. Ann Anat 186: 463–470PubMedCrossRefGoogle Scholar
  58. Mitteroecker P, Gunz P, Bernhard M, Schaefer K, Bookstein FL (2004a) Comparison of cranial ontogenetic trajectories among great apes and humans. J Hum Evol 46: 679–698PubMedCrossRefGoogle Scholar
  59. Molnar S, Gantt DG (1977) Functional implications of primate enamel thickness. Am J Phys Anthropol 46: 447–454PubMedCrossRefGoogle Scholar
  60. Molnar S, Hildebolt C, Molnar IM, Radovcic J, Gravier M (1993) Hominid enamel thickness: I. The Krapina Neandertals. Am J Phys Anthropol 92: 131–138PubMedCrossRefGoogle Scholar
  61. Neubauer S, Gunz P, Mitteroecker P, Weber GW (2004) Three-dimensional digital imaging of the partial Australopithecus africanus endocranium MLD 37/38. Can Assoc Radiol J 55: 271–278PubMedGoogle Scholar
  62. O'Higgins P (2000) The study of morphological variation in the hominid fossil record: biology, landmarks and geometry. J Anat 197: 103–120PubMedCentralPubMedCrossRefGoogle Scholar
  63. O'Higgins P, Jones N (1998) Facial growth in Cercocebus torquatus: an application of three-dimensional geometric morphometric techniques to the study of morphological variation. J Anat 193: 251–272PubMedCentralPubMedCrossRefGoogle Scholar
  64. Olejniczak AJ, Grine FE (in press) High-resolution measurement of Neandertal tooth enamel thickness by micro-focal computed tomography(μCT). S Afr J SciGoogle Scholar
  65. Petrov M, Talapov A, Robertson T, Lebedev A, Zhilyaev A, Polonskiy L (1998) Optical 3D digitizers: bringing life to the virtual world. IEEE Comput Graphics Appl 18: 28–37CrossRefGoogle Scholar
  66. Ponce de León MS (2002) Computerized paleoanthropology and Neanderthals: the case of le Moustier 1. Evol Anthropol 11(Suppl. 1): 68–72CrossRefGoogle Scholar
  67. Ponce de León MS, Zollikofer CPE (1999) New evidence from Le Mousier 1: computer-assisted reconstruction and morphometry of the skull. Anat Rec 254: 474–489PubMedCrossRefGoogle Scholar
  68. Ponce de León MS, Zollikofer CPE (2001) Neanderthal cranial ontogeny and its implications for late hominid diversity. Nature 412: 534–538PubMedCrossRefGoogle Scholar
  69. Prossinger H, Wicke L, Seidler H, Weber GW, Recheis W, Müller G (2000) The CT scans of fossilized crania with encrustations removed allow morphological and metric comparisons of paranasal sinuses. Am J Phys Anthropol Suppl 30: 254Google Scholar
  70. Prossinger H, Seidler H, Wicke L, Weaver D, Recheis W, Stringer C, Müller GB (2003) Electronic removal of encrustations inside the steinheim cranium reveals paranasal sinus features and deformations, and provides a revised endocranial volume estimate. Anat Rec 273B: 132–142CrossRefGoogle Scholar
  71. Rae TC, Koppe T (2000) Isometric scaling of maxillary sinus volume in hominoids. J Hum Evol 38: 411–423PubMedCrossRefGoogle Scholar
  72. Rae TC, Koppe T (2002) 3D imaging and measurement in studies of cranial pneumatization. BAR Int Ser 1049: 11–16Google Scholar
  73. Recheis W, Macchiarelli R, Seidler H, Weaver DS, Schafer K, Bondioli L, Weber GW, zur Nedden D (1999) Re-evaluation of the endocranial volume of the Guattari 1 Neandertal specimen (Monte Circeo). Coll Anthropol 23: 397–405Google Scholar
  74. Richtsmeier JT, Burke Deleon V, Lele SR (2002) The promise of geometric morphometrics. Yrbk Phys Anthropol 45: 63–91CrossRefGoogle Scholar
  75. Rohlf F, Slice D (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst Zool 39: 40–59CrossRefGoogle Scholar
  76. Schwartz GT, Thackeray JF, Reid C, van Reenan JF (1998) Enamel thickness and the topography of the enamel-dentine junction in South African Plio-Pleistocene hominids with special reference to the Carabelli trait. J Hum Evol 35: 523–542PubMedCrossRefGoogle Scholar
  77. Seidler H, Bernhard W, Teschler-Nicola M, Platzer W, zur Nedden D, Henn R, Oberhauser A, Sjøvold T (1992) Some anthropological aspects of the prehistoric tyrolean ice man. Science 258: 455–457PubMedCrossRefGoogle Scholar
  78. Seidler H, Falk D, Stringer C, Wilfing H, Müller GB, zur Nedden D, Weber GW, Reicheis W, Arsuaga JL (1997) A comparative study of stereolithographically modelled skulls of Petralona and Broken Hill: implications for future studies of middle Pleistocene hominid evolution. J Hum Evol 33: 691–703PubMedCrossRefGoogle Scholar
  79. Semendeferi K, Damasio H (2000) The brain and its main anatomical divisions in living hominoids using magnetic resonance imaging. J Hum Evol 38: 317–332PubMedCrossRefGoogle Scholar
  80. Semendeferi K, Damasio H, Frank R, van Hoesen GW (1997) The evolution of the frontal lobes: a volumetric analysis based on three-dimensional reconstructions of magnetic resonance scans of human and ape brains. J Hum Evol 32: 375–388PubMedCrossRefGoogle Scholar
  81. Shellis RP, Beynon AD, Reid DJ, Hiiemae KM (1998) Variations in molar enamel thickness among primates. J Hum Evol 35: 507–522PubMedCrossRefGoogle Scholar
  82. Smith P, Zilberman U (1994) Thin enamel and other tooth components in Neanderthals and other hominids. Am J Phys Anthropol 95: 85–87PubMedCrossRefGoogle Scholar
  83. Smith TM, Martin LB, Leakey MG (2003) Enamel thickness, microstructure and development in Afropithecus turkanensis. J Hum Evol 44: 283–306PubMedCrossRefGoogle Scholar
  84. Sokal RR, Rohlf FJ (1995) Biometry. Freeman WH and Company, New YorkGoogle Scholar
  85. Sperber GH (1985) Comparative primate dental enamel thickness: a radiontological study. In: Tobias PV (ed) Hominid evolution: past, present and future. Alan R. Liss, New York, pp 443–454Google Scholar
  86. Spoor F, Zonneveld F (1994) The bony labyrinth in Homo erectus, a preliminary report. Courier Forschungsinstitut Senckenberg 171: 251–256Google Scholar
  87. Spoor F, Zonneveld F (1998) Comparative review of the human bony labyrinth. Yrbk Phys Anthropol 41: 211–251CrossRefGoogle Scholar
  88. Spoor F, Zonneveld F (1999) Computed tomography-based three-dimensional imaging of hominid fossils, with notes on internal features of the Broken Hill 1 and SK 47 crania. In: Koppe T, Nagai H, Alt K (eds) The paranasal sinuses of higher primates: development, function and evolution. Quintessenz Publishing Inc., Chicago, pp 207–226Google Scholar
  89. Spoor F, Jeffery N, Zonneveld F (2000a) Imaging skeletal growth and evolution. In: O'Higgins P, Cohn M (eds) Development, growth and evolution: implications for the study of the hominid skeleton. Academic Press, London, pp 123–161Google Scholar
  90. Spoor F, Jeffery N, Zonneveld F (2000b) Using diagnostic radiology in human evolutionary studies. J Anat 197: 61–76PubMedCentralPubMedCrossRefGoogle Scholar
  91. Spoor F, Wood B, Zonneveld F (1994) Implications of early hominid labyrinthine morphology for evolution of human bipedal locomotion. Nature 369: 645–648PubMedCrossRefGoogle Scholar
  92. Spoor F, Wood B, Zonneveld F (1996) Evidence for a link between human semicircular canal size and bipedal behaviour. J Hum Evol 30: 183–187CrossRefGoogle Scholar
  93. Spoor F, Zonneveld F, Macho GA (1993) Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am J Phys Anthropol 91: 469–484PubMedCrossRefGoogle Scholar
  94. Spoor F, Hublin JJ, Braun M, Zonneveld F (2003) The bony labyrinth of Neanderthals. J Hum Evol 44: 141–165PubMedCrossRefGoogle Scholar
  95. Steiner G, Fiegler W (1989) Leitfaden der praktischen Kernspintomographie. Ecomed, Landsberg München ZürichGoogle Scholar
  96. Thompson JL, Illerhaus B (1998) A new reconstruction of the Le Moustier 1 skull and investigation of internal structures using 3-D-microCT data. J Hum Evol 35: 647–665PubMedCrossRefGoogle Scholar
  97. Thompson JL, Nelson AJ, Illerhaus B (2002) 3-D imaging and traditional morphometric analysis of the adolescent Neandertal from Le Moustier. BAR Int Ser 1049: 55–61Google Scholar
  98. Ulhaas L, Henke W, Rothe H (1999) Variation in molar enamel thickness of the genera Cercopithecus and Colobus. Anthropologie 37: 265–271Google Scholar
  99. Ulhaas L, Kullmer O, Schrenk F (in press) Tooth wear diversity in early hominid molars – a case study. In: Bailey S, Hublin JJ (eds) Dental perspectives on human evolution: state of the art research in dental paleoanthropology. (Vertebrate Paleobiology and Paleoanthropology Series) Springer, New YorkGoogle Scholar
  100. Ulhaas L, Kullmer O, Schrenk F, Henke W (2004) A new 3-d approach to determine functional morphology of cercopithecoid molars. Ann Anat 186: 487–493PubMedCrossRefGoogle Scholar
  101. Ullrich H (ed) (2005) The Neandertal Adolescent Le Moustier 1—New Aspects, New Results. Berliner Beiträge zur Vor- und Frühgeschichte N.F. Bd 12Google Scholar
  102. Ungar PS, M'Kirera F (2003) A solution to the worn tooth conundrum in primate functional anatomy. Proc Natl Acad Sci USA 100: 3874–3877PubMedCentralPubMedCrossRefGoogle Scholar
  103. Ungar PS, Williamson M (2000) Exploring the effects of tooth wear on functional morphology: a preliminary study using dental topographic analysis. Palaeont Electr 3: 18pp http://www.palaeo-electronica.org/2000_1/gorilla/issue1_00.htm
  104. Ungar PS, Dennis J, Kirera F, Wilson J, Grine F (2002) Quantification of tooth crown shape by dental topographic analysis. Am J Phys Anthropol Suppl 34: 158–159Google Scholar
  105. Vannier MW, Conroy GC (1989a) Imaging workstations for computer-aided primatology: promises and pitfalls. Folia Primatol 53: 7–21PubMedCrossRefGoogle Scholar
  106. Vannier MW, Conroy GC (1989b) Three-dimensional surface reconstruction software system for IBM personal computers. Folia Primatol 53: 22–32PubMedCrossRefGoogle Scholar
  107. Vannier MW, Conroy GC, Marsh JL, Knapp RH (1985) Three-dimensional cranial surface reconstructions using high-resolution computed tomography. Am J Phys Anthrop 67: 299–311PubMedCrossRefGoogle Scholar
  108. Vlaardingerbroek MT, den Boer JA (2003) Magnetic resonance imaging. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  109. Weber GW (2001) Virtual anthropology (VA): a call for glasnost in paleoanthropology. Anat Rec 265: 193–201PubMedCrossRefGoogle Scholar
  110. Weber GW (2002) Virtual anthropology – the hope for more transparency in paleoanthropology. BAR Int Ser 1049: 63–66Google Scholar
  111. Weber GW, Neumaier A, Bookstein FL (2002) Shape analysis and reconstruction using parameterised skull reference models. Coll Anthropol 26(Suppl.): 237Google Scholar
  112. Weber GW, Recheis W, Scholze T, Seidler H (1998) Virtual anthropology (VA): methodological aspects of linear and volume measurements – first results. Coll Anthropol 22: 575–583Google Scholar
  113. Weber GW, Schaefer K, Prossinger H, Gunz P, Mitteroecker P, Seidler H (2001) Virtual anthropology: the digital evolution in anthropological sciences. J Physiol Anthropol Appl Hum Sci 20: 69–80CrossRefGoogle Scholar
  114. Weber GW, Gunz P, Mitteroecker P, Thackeray F, Bookstein FL (2003) Skull reference models (SRM) and the ontogeny of A. africanus. Am J Phys Anthropol Suppl 36: 221–222Google Scholar
  115. Wegener OH, Fassel R, Welger D (1992) Ganzkörpercomputertomographie. Blackwell, BerlinGoogle Scholar
  116. Wind J (1984) Computerized x-ray tomography of fossil hominid skulls. Am J Phys Anthropol 63: 265–282PubMedCrossRefGoogle Scholar
  117. Wind J, Zonneveld F (1985) Radiology of fossil hominid skulls. In: Tobias PV (ed) Hominid evolution: past, present and future. Alan R. Liss Inc., New York, pp 437–442Google Scholar
  118. Wood B, Aiello L, Wood C, Key C (1998) A technique for establishing the identity of “isolated” fossil hominid limb bones. J Anat 193: 61–72PubMedCentralPubMedCrossRefGoogle Scholar
  119. Zhang Z, Zhang D, Peng X, Hu X (2002) A new 3D imaging sensor: gaining range and texture. SPIE Proc. 2nd Int. Conf. Image Graphics 4875(8): 925–930CrossRefGoogle Scholar
  120. Zollikofer CPE (2002) A computational approach to paleoanthropology. Evol Anthropol 11(Suppl. 1): 64–67CrossRefGoogle Scholar
  121. Zollikofer CPE, Ponce de León MS (1995) Tools for rapid prototyping in the biosciences. IEEE Comput Graphics Appl 15: 48–55CrossRefGoogle Scholar
  122. Zollikofer CPE, Ponce de León MS (2002) Virtual paleoanthropology: the 4th dimension. BAR Int Ser 1049: 47–53Google Scholar
  123. Zollikofer CPE, Ponce de León MS, Martin RD (1998) Computer-assisted paleoanthropology. Evol Anthropol 6: 41–54CrossRefGoogle Scholar
  124. Zollikofer CPE, Ponce de León MS, Martin RD, Stucki P (1995) Neanderthal computer skulls. Nature 375: 283–285PubMedCrossRefGoogle Scholar
  125. Zonneveld F (2002) Applications and pitfalls of CT-based 3-D imaging of hominoid fossils. BAR Inter Ser 1049: 5–9Google Scholar
  126. Zonneveld F, Wind J (1985) High-resolution computed tomography of fossil hominid skulls: a new method and some results. In: Tobias PV (ed) Hominid evolution: past, present and future. Alan Liss, New York, pp 427–436Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2007

Authors and Affiliations

  • Lilian Ulhaas

There are no affiliations available

Personalised recommendations