Advertisement

16 Patterns of Diversification and Extinction

  • Walter Etter
Reference work entry

Abstract

The history of life on earth, from the earliest microscopic cells to the modern world populated by the rich variety of animals, plants, fungi, and microbes, is more than 3500 Myr long. Documenting the diversity patterns through the Proterozoic and Phanerozoic has been a major task in the past decades and is fraught with many methodological problems. The emergent picture is one of a very irregular increase in diversity. The most significant episodes of diversification occurred during the Cambrian–Ordovician and throughout the Mesozoic–Cenozoic. In the Phanerozoic alone, 5 major and more than 15 smaller mass extinctions disrupted the diversification of life and sometimes drastically altered the way of evolution. There was no common cause for these events, but all were the consequence of large-scale environmental perturbations. There is growing concern that we are currently entering a “Sixth” major extinction, caused by human impact on nature.

Keywords

Mass Extinction Late Ordovician Global Cool Cambrian Explosion Extinction Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Various people at the Natural History Museum in Basel helped in stimulating discussions to improve this chapter. The chapter was critically read by W. Henke and I. Tattersall.

References

  1. Adoutte A, Balavoine G, Lartillot N, Lespinet O, Prud'homme B, de Rosa R (2000) The new animal phylogeny: Reliability and implications. Proc Natl Acad Sci 97: 4453–4456PubMedCentralPubMedCrossRefGoogle Scholar
  2. Adrain JM, Westrop SR (2000) An empirical assessment of taxic paleobiology. Science 289: 110–112PubMedCrossRefGoogle Scholar
  3. Adrain JM, Westrop SR (2003) Paleobiodiversity: We need new data. Paleobiology 29: 22–25CrossRefGoogle Scholar
  4. Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: Links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc Lond B 353: 113–130CrossRefGoogle Scholar
  5. Allen PA, Hoffman PF (2005) Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433: 123–127PubMedCrossRefGoogle Scholar
  6. Alroy J (1999) Putting North America's end-Pleistocene megafaunal mass extinction in context: Large-scale analyses of spatial patterns, extinction rates, and size distributions. In: MacPhee RDE (ed) Extinctions in near time: Causes, contexts, and consequences. Plenum Press, New York, pp 105–143CrossRefGoogle Scholar
  7. Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M, Fürsich FT, Hansen TA, Holland SM, Ivany LC, Jablonski D, Jacobs DK, Jones DC, Kosnik MA, Lidgard S, Low S, Miller AI, Novack-Gottshall PM, Olszewski TD, Patzkowsky ME, Raup DM, Roy K, Sepkoski JJ Jr., Sommers MG,Wagner PJ, Webber A (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci 98: 6261–6266PubMedCentralPubMedCrossRefGoogle Scholar
  8. Alvarez L, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 1095–1108PubMedCrossRefGoogle Scholar
  9. Alvarez W, Claeys P, Kieffer SW (1995) Emplacement of Cretaceous-Tertiary boundary shocked quartz from Chicxulub crater. Science 269: 930–935PubMedCrossRefGoogle Scholar
  10. Appel PWU, Moorbath S, Myers JS (2003) Isuasphaera isua (Pflug) revisited. Precambrian Res 126: 309–312CrossRefGoogle Scholar
  11. Archibald JD (1996) Dinosaur extinction and the end of an era: What the fossils say. Columbia University Press, New York, p 237Google Scholar
  12. Archibald JD, Fastovsky DE (2004) Dinosaur extinction. In: Weishampel DB, Dodson P, Osmólska H (eds) The Dinosauria, 2nd edn., pp 672–684. University of California Press, Berkeley, 861 ppCrossRefGoogle Scholar
  13. Armstrong, HA (1996) Biotic recovery after mass extinction: The role of climate and ocean-state in the post-glacial (Late Ordovician-Early Silurian) recovery of the conodonts. In: Hart MB (ed) Biotic recovery from mass extinction events. Geological Society London Special Publication 102, pp 105–117Google Scholar
  14. Ausich WI, Bottjer DJ (1982) Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216: 173–174PubMedCrossRefGoogle Scholar
  15. Awramik SM, Sprinkle J (1999) Proterozoic stromatolites: The first marine evolutionary biota. Hist Biol 13: 241–253CrossRefGoogle Scholar
  16. Bambach RK (1977) Species richness in marine benthic habitats through the Phanerozoic. Paleobiology 3: 152–167Google Scholar
  17. Bambach RK (1983) Ecospace utilization and guilds in marine communities through the Phanerozoic. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities, pp 719–746. Topics in Geobiology 3. Plenum Press, New York, 837 ppCrossRefGoogle Scholar
  18. Bambach RK (1993) Seafood through time: Changes in biomass, energetics, and productivity in the marine ecosystems. Paleobiology 19: 372–397Google Scholar
  19. Bambach RK, Knoll AH, Sepkoski JJ Jr. (2002) Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc Natl Acad Sci 99: 6854–6859PubMedCentralPubMedCrossRefGoogle Scholar
  20. Bambach RK, Knoll AH, Wang SC (2004) Origination, extinction, and mass depletions of marine diversity. Paleobiology 30: 522–542CrossRefGoogle Scholar
  21. Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB (2004) Assessing the causes of Late Pleistocene extinctions on the continents. Science 306: 70–75PubMedCrossRefGoogle Scholar
  22. Becker L, Poreda RJ, Hunt AG, Bunch TE, Rampino M (2001) Impact event at the Permian-Triassic boundary: Evidence from extraterrestrial noble gases in fullerenes. Science 291: 1530–1533PubMedCrossRefGoogle Scholar
  23. Becker L, Poreda RJ, Basu AR, Pope KO, Harrison TM, Nicholson C, Iasky R (2004) Bedout: A possible End-Permian impact crater offshore of Northwestern Australia. Science 304: 1469–1476PubMedCrossRefGoogle Scholar
  24. Beerling DJ, Osborne CP, Chaloner WG (2001) Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era. Nature 410: 352–354PubMedCrossRefGoogle Scholar
  25. Bengtson S (1994) The advent of animal skeletons. In: Bengtson S (ed) Early life on earth. Nobel Symposium No. 84, pp 412–425. Columbia University Press, New York, 630 ppGoogle Scholar
  26. Benton MJ (1990) Scientific methodologies in collision: The history of the study of the extinction of the dinosaurs. Evol Biol 24: 371–400Google Scholar
  27. Benton MJ (1993) The fossil record 2. Chapman & Hall, London, 845 ppGoogle Scholar
  28. Benton MJ (1994) Late Triassic to Middle Jurassic extinctions among continental tetrapods: Testing the pattern. In: Fraser NC, Sues H-D (eds) In: the shadow of dinosaurs. Cambridge University Press, Cambridge, pp 366–397.Google Scholar
  29. Benton MJ (1995) Diversification and extinction in the history of life. Science 268: 52–58PubMedCrossRefGoogle Scholar
  30. Benton MJ (1999) The history of life: Large databases in palaeontology. In: Harper DAT (ed) Numerical palaeobiology, pp 249–283. John Wiley & Sons, Chichester, 468 ppGoogle Scholar
  31. Benton MJ (2001) Biodiversity through time. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 211–220. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  32. Benton MJ (2003) When life nearly died: The greatest mass extinction of all times. Thames & Hudson, London, p 336Google Scholar
  33. Benton MJ, Twitchett RJ (2003) How to kill (almost) all life: The end-Permian extinction event. Trends Ecol Evol 18: 358–365CrossRefGoogle Scholar
  34. Berggren WA, Prothero DR (1992) Eocene-Oligocene climatic and biotic evolution: An overview. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 1–28CrossRefGoogle Scholar
  35. Bergman NM, Lenton TM, Watson AJ (2004) COPSE: A new model of biogeochemical cycling over Phanerozoic time. Am J Sci 304: 397–437CrossRefGoogle Scholar
  36. Berner RA (1998) The carbon cycle and CO2 over Phanerozoic time: The role of land plants. Philos Trans R Soc Lond B 353: 75–82CrossRefGoogle Scholar
  37. Berner RA (1999) Atmospheric oxygen over Phanerozoic time. Proc Natl Acad Sci 96: 10955–10957PubMedCentralPubMedCrossRefGoogle Scholar
  38. Berner RA Beerling DJ, Dudley R, Robinson JM, Wildmann RA Jr. (2003) Phanerozoic atmospheric oxygen. Annu Rev Earth Planetary Sci 31: 105–134CrossRefGoogle Scholar
  39. Berry WBN, Boucot AJ (1973) Glacio-eustatic control of Late Ordovician-Early Silurian platform sedimentation and faunal changes. Geol Soc Am Bull 84: 275–284CrossRefGoogle Scholar
  40. Boucot AJ (1983) Does evolution take place in an ecological vacuum? II. J Paleontol 57: 1–30Google Scholar
  41. Bottjer DJ (2002) Enigmatic Ediacara fossils: Ancestors or aliens? In: Bottjer DJ, Etter W, Hagadorn JW, Tang CM (eds) Exceptional fossil preservation: A unique view on the evolution of marine life. Columbia University Press, New York, pp 11–33Google Scholar
  42. Bottjer DJ, Ausich WI (1986) Phanerozoic development of tiering in soft-substrata suspension-feeding communities. Paleobiology 12: 400–420Google Scholar
  43. Bottjer DJ, Hagadorn JW, Dornbos SQ (2000) The Cambrian substrate revolution. GSA Today 10(9): 1–7Google Scholar
  44. Bottjer DJ, Droser ML, Sheehan PM, McGhee GR Jr. (2001) The ecological architecture of major events in the Phanerozoic history of marine invertebrate life. In: Allmon WD, Bottjer DJ (eds) Evolutionary paleoecology. Columbia University Press, New York, pp 35–61Google Scholar
  45. Bottjer DJ, Etter W, Hagadorn JW, Tang CM (2002) Exceptional fossil preservation—a unique view on the evolution of marine life. Columbia University Press, New York, p 403Google Scholar
  46. Brack A (1998) The molecular origin of life: Assembling pieces of the puzzle. Cambridge University Press, CambridgeGoogle Scholar
  47. Brasier MD (1992) Nutrient-enriched waters and the early skeletal fossil record. J Geol Soc Lond 149: 621–629CrossRefGoogle Scholar
  48. Brasier M, Antcliffe J (2004) Decoding the Ediacaran enigma. Science 305: 1115–1117PubMedCrossRefGoogle Scholar
  49. Brasier MD, Lindsay JF (2001) Did supercontinental amalgamation trigger the “Cambrian explosion”? In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 69–89Google Scholar
  50. Brasier MD, Green O, Lindsay J, Steele A (2004) Earth's oldest (∼3.5 Ga) fossils and the ‘Early Eden Hypothesis’: Questioning the evidence. Orig Life Evol Biosph 34: 257–269PubMedCrossRefGoogle Scholar
  51. Brenchley PJ (2001) Late ordovician extinction. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 220–223. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  52. Brenchley PJ, Marshall JD, Carden GAF, Robertson DBR, Long DGF, Meidla T, Hints L, Anderson TF (1994) Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 22: 295–298CrossRefGoogle Scholar
  53. Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32: 473–476CrossRefGoogle Scholar
  54. Brett CE (2003) Durophagous predation in Paleozoic marine benthic assemblages. In: Kelley PH, Kowalewski M, Hansen TA (eds) Predator-prey interactions in the fossil record, Topics in Geobiology 20. Kluwer Academic/Plenum Publishers, New York, pp 401–432CrossRefGoogle Scholar
  55. Bridgwater D, Allaart JH, Schopf JW, Klein C, Walter ES, Strother P, Knoll AH, Gorman BE (1981) Microfossil-like objects from the Archean of Greenland: A cautionary note. Nature 289: 51–53CrossRefGoogle Scholar
  56. Briggs DEG (1985) Gigantism in Palaeozoic arthropods. Spec Pap Palaeontol 33: 1–157Google Scholar
  57. Briggs DEG, Fortey RA, Wills MA (1992) Morphological disparity in the Cambrian. Science 256: 1670–1673PubMedCrossRefGoogle Scholar
  58. Briggs DEG, Erwin DH, Collier FJ (1994) The fossils of the Burgess Shale. Smithsonian Institution Press, Washington, p 238Google Scholar
  59. Brocks JJ, Logan GA, Buick R, Summons RE (1999) U.S molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036PubMedCrossRefGoogle Scholar
  60. Brown KS (1999) Deep green rewrites evolutionary history of plants. Science 285: 990–991PubMedCrossRefGoogle Scholar
  61. Budd GE, Jensen S (2000) A critical reappraisal of the fossil record of the bilaterian phyla. Biol Rev 75: 253–295PubMedCrossRefGoogle Scholar
  62. Budd GE, Jensen S (2004) The limitations of the fossil record and the dating of the origin of the Bilateria. In: Donoghue PCJ, Smith MP (eds) Telling the evolutionary time: Molecular clocks and the fossil record. Taylor & Francis, London, pp 166–189Google Scholar
  63. Buick R (2001) Life in the U.S. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 13–21. Blackwell Science, Oxford, p 583CrossRefGoogle Scholar
  64. Buick R, Des Marais DJ, Knoll AH (1995) Stable isotopic composition of carbonates from the Mesoproterozoic Bangemall group, northwestern Australia. Chem Geol 123: 153–171PubMedCrossRefGoogle Scholar
  65. Burney DA, Flannery TF (2005) Fifty millenia of catastrophic extinctions after human contact. Trends Ecol Evol 20: 395–401PubMedCrossRefGoogle Scholar
  66. Burzin MB, Debrenne F, Zhuravlev AY (2001) Evolution of shallow-water level-bottom communities. In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 217–237Google Scholar
  67. Bush AM, Bambach RK (2004) Did alpha diversity increase through the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. J Geol 112: 625–642CrossRefGoogle Scholar
  68. Bush AM, Markey MJ, Marshall CR (2004) Removing bias from diversity curves: The effects of spatially organized biodiversity on sampling standardization. Paleobiology 30: 666–686CrossRefGoogle Scholar
  69. Buss LW, Seilacher A (1994) The phylum Vendobionta: A sister group of the Eumetazoa? Paleobiology 20: 1–4Google Scholar
  70. Butterfield N (2001) Ecology and evolution of the Cambrian plankton. In: Zhuravlev AY, Riding R (eds) Ecology of the Cambrian radiation, pp 200–216. Columbia University Press, New York, 525 ppGoogle Scholar
  71. Campbell IH, Czamanske GK, Fedorenko VA, Hill RI, Stepanov V (1992) Synchronism of the Siberian traps and the Permian-Triassic boundary. Science 258: 1760–1763PubMedCrossRefGoogle Scholar
  72. Canfield DE, Teske A (1996) Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382: 127–132PubMedCrossRefGoogle Scholar
  73. Caputo MV (1985) Late Devonian glaciation in South America. Palaeogeogr Palaeoclimatol Palaeoecol 51: 291–317CrossRefGoogle Scholar
  74. Carroll SB (2001) Chance and necessitiy: The evolution of morphological complexity and diversity. Nature 409: 1102–1109PubMedCrossRefGoogle Scholar
  75. Chaloner WG (2003) The role of carbon dioxide in plant evolution. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth, pp 65–83. Academic Press, Amsterdam, 438 ppCrossRefGoogle Scholar
  76. Chandler MA, Sohl LE (2000) Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J Geophys Res 105: 20737–20756CrossRefGoogle Scholar
  77. Chen J-Y, Oliveri P, Li CW, Zhou GQ, Gao F, Hagadorn JW, Peterson KJ, Davidson EH (2000) Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo formation of China. Proc Natl Acad Sci USA 97: 4457–4462PubMedCentralPubMedCrossRefGoogle Scholar
  78. Chen J-Y, Bottjer DJ,Oliveri P,Dornbos SQ, Gao F, Ruffins S, Chi H, LiC-W, Davidson EH (2004) Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science 305: 218–222PubMedCrossRefGoogle Scholar
  79. Conway Morris S (1993) Ediacaran-like fossils in the Cambrian Burgess Shale-type faunas of North America. Palaeontology 36: 593–635Google Scholar
  80. Conway Morris S (1998) The crucible of creation. Oxford University Press, OxfordGoogle Scholar
  81. Conway Morris S (2000) The Cambrian “explosion”: Slow-fuse or megatonnage? Proc Natl Acad Sci USA 97: 4426–4429PubMedCentralPubMedCrossRefGoogle Scholar
  82. Conway Morris S (2001) Significance of early shells. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 31–40. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  83. Conway Morris S (2003) Life's solution: Inevitable humans in a lonely universe. Cambridge University Press, Cambridge, p 464CrossRefGoogle Scholar
  84. Copper P (1986) Frasnian/Famennian mass extinction and cold-water oceans. Geology 14: 835–839CrossRefGoogle Scholar
  85. Copper P (1988) Ecological succession in Phanerozoic reefs: Is it real? Palaios 3: 136–152CrossRefGoogle Scholar
  86. Copper P, Scotese CR (2003) Megareefs in middle Devonian supergreenhouse climates. Geol Soc Am Spec Pap 370: 209–230Google Scholar
  87. Courtillot V (1990) A volcanic eruption. Sci Am 263(4): 53–60Google Scholar
  88. Courtillot V (1999) Evolutionary catastrophes: The science of mass extinctions. Cambridge University Press, Cambridge, p 173Google Scholar
  89. Courtillot V, Gaudemer Y (1996) Effects of mass extinctions on biodiversity. Nature 381: 146–148CrossRefGoogle Scholar
  90. Cowen R (2005) History of life, 4th edn. Blackwell Publishing, Malden MA, p 324Google Scholar
  91. Crimes TP (1992) The record of trace fossils across the Proterozoic-Cambrian boundary. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa, pp 177–202. Topics in Geobiology 10. Plenum Press, New York, 570 ppCrossRefGoogle Scholar
  92. Crimes TP (2001) Evolution of the deep-water benthic community. In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 275–297Google Scholar
  93. Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press, New York, p 339Google Scholar
  94. DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 421: 245–249PubMedCrossRefGoogle Scholar
  95. DiMichele WA, Pfefferkorn HW, Gastaldo RA (2001) Response of Late carboniferous and Early Permian plant communities to climate change. Annu Rev Earth Planet Sci 29: 461–487CrossRefGoogle Scholar
  96. Doolittle RF, Feng D-F, Tsang S, Cho G, Little E (1996) Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271: 470–477PubMedCrossRefGoogle Scholar
  97. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284: 2124–2128PubMedCrossRefGoogle Scholar
  98. Dornbos SQ, Bottjer DJ (2000) Evolutionary paleoecology of the earliest echinoderms: Helicoplacoids and the Cambrian substrate revolution. Geology 28: 839–842CrossRefGoogle Scholar
  99. Dornbos SQ, Bottjer DJ, Chen J-Y (2005) Paleoecology of benthic metazoans in the early Cambrian Maotianshan Shale biota and the Middle Cambrian Burgess Shale biota: Evidence for the Cambrian substrate revolution. Palaeogeogr Palaeoclimatol Palaeoecol 220: 47–67CrossRefGoogle Scholar
  100. Douzery EJP, Snell EA, Bapteste E, Delsuc F, Philippe H (2004) The timing of eukaryotic evolution: Does a relaxed molecular clock reconcile proteins and fossils? Proc Natl Acad Sci 101: 15386–15391PubMedCentralPubMedCrossRefGoogle Scholar
  101. Droser ML, Bottjer DJ (1989) Ordovician increase in extent and depth of bioturbation: Implications for understanding early Paleozoic ecospace utilization. Geology 17: 850–852CrossRefGoogle Scholar
  102. Droser ML, Bottjer DJ (1993) Trends and patterns of Phanerozoic ichnofabrics. Annu Rev Earth Planet Sci 21: 205–225CrossRefGoogle Scholar
  103. Droser ML, Li X (2001) The Cambrian radiation and the diversification of sedimentary fabrics. In: Zhuravlev AY, Riding R (eds) The ecology of the Cambrian radiation. Columbia University Press, New York, pp 137–169Google Scholar
  104. Droser ML, Bottjer DJ, Sheehan PM, McGhee GR Jr. (2000) Decoupling of taxonomic and ecologic severity of Phanerozoic marine mass extinctions. Geology 28: 675–678CrossRefGoogle Scholar
  105. Dudley R (1998) Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance. J Exp Biol 201: 1043–1050PubMedGoogle Scholar
  106. Dudley R (2000) The evolutionary physiology of animal flight: Paleobiological and present perspectives. Annu Rev Physiol 62: 135–155PubMedCrossRefGoogle Scholar
  107. Dyer BD, Obar RA (1994) Tracing the history of eukaryotic cells: The enigmatic smile. Columbia University Press, New York, p 259Google Scholar
  108. Dzik J (1993) Early metazoan evolution and the meaning of its fossil record. Evol Biol 27: 339–386CrossRefGoogle Scholar
  109. Dzik J (2003) Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integrative and comparative biology (formerly American Zoologist) 43: 114–126CrossRefGoogle Scholar
  110. Erwin DH (1990) The end-Permian mass extinction. Annu Rev Ecol Syst 21: 69–91CrossRefGoogle Scholar
  111. Erwin DH (1993) The great Paleozoic crisis. Life and death in the Permian. Columbia University Press, New York, p 327Google Scholar
  112. Erwin DH (1996) The mother of mass extinctions. Sci Am 275: 72–78CrossRefGoogle Scholar
  113. Erwin DH (1996b) Understanding biotic recoveries: Extinction, survival, and preservation during the end-Permian mass extinction. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. The University of Chicago Press, Chicago, pp 398–418Google Scholar
  114. Erwin DH (2001a) Metazoan origins and early evolution. In: Briggs DEG, MCrowther PR (eds) Palaeobiology II, pp 25–31. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  115. Erwin DH (2001b) Lessons from the past: Biotic recoveries from mass extinctions. Proc Natl Acad Sci 98: 5399–5403PubMedCentralPubMedCrossRefGoogle Scholar
  116. Erwin DH (2003) Impact at the Permo-Triassic boundary: A critical evaluation. Astrobiology 3(1): 67–74PubMedCrossRefGoogle Scholar
  117. Erwin DH, Droser ML (1993) Elvis taxa. Palaios 8: 623–624CrossRefGoogle Scholar
  118. Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129: 3021–3032PubMedGoogle Scholar
  119. Erwin DH, Bowring SA, Jin YG (2002) End-Permian mass extinctions: A review. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: Impacts and beyond. Geol Soc Am Spec Pap 356: 363–383Google Scholar
  120. Eshet Y, Rampino MR, Visscher H (1995) Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23: 967–970CrossRefGoogle Scholar
  121. Fagerstrom JA (1994) The history of Devonian-Carboniferous reef communities: Extinctions, effects, recovery. Facies 30: 177–192CrossRefGoogle Scholar
  122. Fastovsky DE, Huang Y, Hsu J, Martin-McNaughton J, Sheehan PM, Weishampel DB (2004) Shape of Mesozoic dinosaur richness. Geology 32: 877–880CrossRefGoogle Scholar
  123. Fedonkin MA, Waggoner BM (1997) The late Precambrian fossil Kimberella is a mollusk-like bilaterian organism. Nature 388: 868CrossRefGoogle Scholar
  124. Fenchel T (2002) The origin and early evolution of life. Oxford University Press, Oxford, p 171Google Scholar
  125. Fischer AG (1984) The two Phanerozoic supercycles. In: Berggren WA, Van Couvering JA (eds) Catastrophes and earth history. Princeton University Press, Princeton, pp 129–150Google Scholar
  126. Fischer AG, Arthur MA (1977) Secular variations in the pelagic realm. In: Cook HE, Enos P (eds) Deep water carbonate environments. Soc Econ Paleontol Mineral Spec Publ 25: 18–50Google Scholar
  127. Foote M (1997) The evolution of morphological disparity. Annu Rev Ecol Syst 28: 129–152CrossRefGoogle Scholar
  128. Fortey RA, Cocks RM (2005) Late Ordovician global warming—the Boda event. Geology 33: 405–408CrossRefGoogle Scholar
  129. Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic: The history of earth's climate over the past 600 million years. Cambridge University Press, Cambridge, p 274CrossRefGoogle Scholar
  130. Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in U.S pillow lavas. Science 304: 578–581PubMedCrossRefGoogle Scholar
  131. Giribet G (2002) Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion? Mol Phylogenet Evol 24: 345–357PubMedCrossRefGoogle Scholar
  132. Glaessner M (1983) The emergence of metazoa in the early history of life. Precambrian Res 290: 427–441CrossRefGoogle Scholar
  133. Glaessner M (1984) The dawn of animal life: A biohistorical study. Cambridge University Press, Cambridge, p 224Google Scholar
  134. Gould SJ (1989) Wonderful life: The Burgess Shale and the nature of history. Norton, New York, p 347Google Scholar
  135. Gould SJ (1991) The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: Why we must strive to quantify morphospace. Paleobiology 17: 411–423Google Scholar
  136. Gould SJ (1996) Full house: The spread of excellence from Plato to Darwin. Norton, New YorkCrossRefGoogle Scholar
  137. Gould SJ (2001) Contingency. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 195–198. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  138. Gradstein FM, Ogg JG (2004) Geologica time scale 2004—why, how, and where next! Lethaia 37: 175–181CrossRefGoogle Scholar
  139. Graham JB, Dudley R, Aguilar N, Gans C (1995) Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375: 117–120CrossRefGoogle Scholar
  140. Gregory JT (1955) Vertebrates in the geologic time scale. Geol Soc Am Spec Pap 62: 593–608Google Scholar
  141. Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27: 313–358PubMedCrossRefGoogle Scholar
  142. Grotzinger JP, Watters WA, Knoll AH (2000) Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26: 334–359CrossRefGoogle Scholar
  143. Halanych KM (2004) The new view of animal phylogeny. Annu Rev Ecol, Evol Syst 35: 229–256CrossRefGoogle Scholar
  144. Hallam A (1984) Pre-quarternary changes of sea-level. Annu Rev Earth Planet Sci 12: 205–243CrossRefGoogle Scholar
  145. Hallam A (1992) Phanerozoic sea-level changes. Columbia University Press, New York, p 266Google Scholar
  146. Hallam A (2002) How catastrophic was the end-Triassic extinction? Lethaia 35: 147–157CrossRefGoogle Scholar
  147. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford, p 320Google Scholar
  148. Hallam A, Wignall PB (1999) Mass extinctions and sea-level changes. Earth Sci Rev 48: 217–250CrossRefGoogle Scholar
  149. Han T-M, Runnegar B (1992) Megascopic eukaryotic algae from the 2.1 billion-year-old Negaunee Iron-Formation, Michigan. Scinece 257: 232–235CrossRefGoogle Scholar
  150. Harper EM (2003) The Mesozoic marine revolution. In: Kelley PH, Kowalewski M, Hansen TA (eds) Predator-prey interactions in the fossil record, pp 433–455. Topics in Geobiology 20. Kluwer Academic/Plenum Publishers, New YorkCrossRefGoogle Scholar
  151. Harper EM (2006) Dissecting post-Palaeozoic arms races. Palaeogeogr Palaeoclimatol Palaeoecol 232: 148–166Google Scholar
  152. Hedges SB (2004) Molecular clocks and a biological trigger for Neoproterozoic snowball earth events and the Cambrian explosion. In: Donoghue PCJ, Smith MP (eds) Telling the evolutionary time: Molecular clocks and the fossil record. Taylor & Francis, London, pp 27–40Google Scholar
  153. Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobson SB, Boynton WV (1990) Chicxulub crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 19: 867–871CrossRefGoogle Scholar
  154. Hofmann HJ (1994) Proterozoic carbonaceous compressions (“metaphytes” and “worms”). In: Bengtson S (ed) Early life on earth. Nobel Symposium No. 84, pp 342–357. Columbia University Press, New York, 630 ppGoogle Scholar
  155. Hofmann HJ, Schopf JW (1983) Early Proterozoic microfossils. In: Schopf JW (ed) Earth's earliest biosphere: Ist origin and evolution. Princeton University Press, Princeton, pp 321–360Google Scholar
  156. Hoffman PF, Schrag DP (2002) The snowball earth hypothesis: Testing the limits of global change. Terra Nova 14: 129–155CrossRefGoogle Scholar
  157. Hoffman PF, Kaufman AJ, Halverson GP, Shrag DP (1998) A Neoproterozoic snowball earth. Science 281: 1342–1346PubMedCrossRefGoogle Scholar
  158. Holland HD (1994) Early Proterozoic atmospheric change. In: Bengtson S (ed) Early life on earth. Nobel Symposium No. 84, pp 237–244. Columbia University Press, New York, 630 ppGoogle Scholar
  159. Hooker JJ, Collinson ME, Sille NP (2004) Eocene-oligocene mammalian faunal turnover in the Hampshire Basin, UK: Calibration to the global time scale and the major cooling event. J Geol Soc Lond 161: 161–172CrossRefGoogle Scholar
  160. Horneck G (2003) Could life travel across interplanetary space? Panspermia revisited. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth—the impact of the physical environment, pp 109–127. Academic Press, Amsterdam, 438 ppCrossRefGoogle Scholar
  161. Hsu KJ, McKenzie JA (1985) A Strangelove ocean in the earliest Tertiary. In: Sundquist ET, Broecker W (eds) The carbon cycle and atmospheric CO2: Natural variation U.S to present. Geophys Monogr Ser 32: 487–492Google Scholar
  162. Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276: 245–247PubMedCrossRefGoogle Scholar
  163. Huey RB, Ward PD (2005) Hypoxia, global warming, and terrestrial Late Permian extinctions. Science 308: 398–401PubMedCrossRefGoogle Scholar
  164. Hurlbert S, Archibald JD (1995) No evidence of sudden (or gradual) dinosaur extinction at the K/T boundary. Geology 23: 881–884CrossRefGoogle Scholar
  165. Huynh TT, Poulsen CJ (2004) Rising atmospheric CO2 as a possible trigger for the end-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 217: 223–242CrossRefGoogle Scholar
  166. Ivany LC, Nesbitt EA, Prothero DR (2003) The marine Eocene-Oligocene transition: A synthesis. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: The marine Eocene-Oligocene transition. Columbia University Press, New York, pp 522–534Google Scholar
  167. Jablonski D (1986) Causes and consequences of mass extinctions. In: Elliot DK (ed) Dynamics of extinction. Wiley, New York, pp 183–229Google Scholar
  168. Jablonski D (1994) Extinctions in the fossil record. Philos Trans R Soc Lond B 344: 11–17CrossRefGoogle Scholar
  169. Jablonski D (2001) Lessons from the past: Evolutionary impacts of mass extinctions. Proc Natl Acad Sci 98: 5393–5398PubMedCentralPubMedCrossRefGoogle Scholar
  170. Jablonski D (2003) The interplay of physical and biotic factors in macroevolution. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth, pp 235–252. Academic Press, Amsterdam, 438 ppCrossRefGoogle Scholar
  171. Jablonski D, Roy K, Valentine JW, Price RM, Anderson PS (2003) The impact of the pull of the recent on the history of marine diversity. Science 300: 1133–1135PubMedCrossRefGoogle Scholar
  172. Jenkins RJF (1992) Functional and ecological aspects of Ediacaran assemblages. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa, Topics in Geobiology 10. pp 131–176. Plenum Press, New York, 570 ppCrossRefGoogle Scholar
  173. Jia-Yu R, Xu C, Harper DAT (2002) The latest Ordovician Hirnantia fauna (Brachiopoda) in time and space. Lethaia 35: 231–249CrossRefGoogle Scholar
  174. Johnson CN (2002) Determinants of loss of mammal species during the Late Quarternary ‘megafauna’ extinctions: Life history and ecology, but not body size. Proc R Soc Lond B 269: 2221–2227CrossRefGoogle Scholar
  175. Katz LA (1998) Changing perspectives on the origin of eukaryotes. Trends Ecol Evol 13: 493–497PubMedCrossRefGoogle Scholar
  176. Kauffman EG, Erwin DH (1995) Surviving mass extinctions. Geotimes 40(3): 14–17Google Scholar
  177. Kaufman AJ, Knoll AH, Narbonne GM (1997) Isotopes, ice ages, and terminal Proterozoic earth history. Proc Natl Acad Sci 94: 6600–6605PubMedCentralPubMedCrossRefGoogle Scholar
  178. Keller G, Stinnesbeck W, Adatte T, Stüben D (2003) Multiple impacts across the Cretaceous-Tertiary boundary. Earth Sci Rev 62: 327–363CrossRefGoogle Scholar
  179. Kelley PH, Hansen TA (2001) Mesozoic marine revolution. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 94–97. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  180. Kelley SP (2003) Volcanic inputs. In: Skelton PW (ed) The cretaceous world, The Open University. Cambridge University Press, Cambridge, pp 209–248Google Scholar
  181. Kennett JP, Exon NF (2004) Paleoceanographic evolution of the Tasmanian seaway and its climatic implications. In: Exon NF, Kennett JP, Malone M (eds) The Cenozoic Southern Ocean: Tectonics, sedimentation and climate change between Australia and Antarctica, Geophysical Monograph Series 151. American Geophysical Union, Washington DC, pp 345–367CrossRefGoogle Scholar
  182. Kirschvink JL (1992) Late Proterozoic low-latitude global glaciation: The snowball earth. In: Schopf JW, Klein C (eds) The proterozoic biosphere: A multidisciplinary study. Cambridge University Press, Cambridge, pp 51–52Google Scholar
  183. Knoll AH (1984) Patterns of extinction in the fossil record of vascular plants. In: Nitecki MH (ed) Extinctions. University of Chicago Press, Chicago, pp 21–68Google Scholar
  184. Knoll AH (1992) The early evolution of eukaryotes: A geological perspective. Science 256: 622–627PubMedCrossRefGoogle Scholar
  185. Knoll AH (1994) Proterozoic and Early Cambrian protists: Evidence for accelerating evolutionary tempo. Proc Natl Acad Sci 91: 6743–6750PubMedCentralPubMedCrossRefGoogle Scholar
  186. Knoll AH (1996) Breathing room for early animals. Nature 382: 111–112PubMedCrossRefGoogle Scholar
  187. Knoll AH (1999) A new molecular window on early life. Science 285: 1025–1026PubMedCrossRefGoogle Scholar
  188. Knoll AH, Walter MR (1992) Latest Proterozoic stratigraphy and Earth history. Nature 356: 673–678PubMedCrossRefGoogle Scholar
  189. Knoll AH, Carroll SB (1999) Early animal evolution: Emerging views from comparative biology and geology. Science 284: 2129–2137PubMedCrossRefGoogle Scholar
  190. Knoll AH, Bambach RK (2000) Directionality in the history of life: Diffusion from the left wall or repeated scaling of the right? In: Erwin DH, Wing SL (eds) Deep time: Paleobiology's perspective (supplement to paleobiology 26(4)). Paleontological Society/Allen Press, Lawrence, pp 1–14Google Scholar
  191. Knoll AH, Walter MR, Narbonne GM, Christie-Blick N (2004) A new period for the geologic time scale. Science 305: 621–622PubMedCrossRefGoogle Scholar
  192. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: A climatic disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102: 11131–11136PubMedCentralPubMedCrossRefGoogle Scholar
  193. Kump LR, Arthur MA, Patzkowsky ME, Gibbs MT, Pinkus DS, Sheehan PM (1999) A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician. Palaeogeogr Palaeoclimatol Palaeoecol 152: 173–187CrossRefGoogle Scholar
  194. Kump LR, Kasting JF, Crane RG (2004) The earth system, 2nd edn. Prentice Hall, Upper Saddle River NJ, p 420Google Scholar
  195. Kump LR, Pavlov A, Arthur MA (2005) Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology 33: 397–400CrossRefGoogle Scholar
  196. Labandeira CC, Sepkoski JJ Jr. (1993) Insect diversity in the fossil record. Science 261: 310–315PubMedCrossRefGoogle Scholar
  197. Labandeira CC, Eble GJ (in press) The fossil record of insect diversity and disparity. In: Anderson J, de Wit M, Thackeray F, van Wyk B (eds) Gondwana alive: Biodiversity and the evolving biosphere. Witwatersrand University PressGoogle Scholar
  198. Lane A, Janis CM, Sepkoski JJ Jr. (2005) Estimating paleodiversities: A test of the taxic and phylogenetic methods. Paleobiology 31: 21–34CrossRefGoogle Scholar
  199. Lazcano A (2001) Origin of life. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 3–8. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  200. Lazcano A, Miller SL (1996) The origin and early evolution of life: Prebiotic chemistry, the RNA world, and time. Cell 85: 793–796PubMedCrossRefGoogle Scholar
  201. Legendre S, Hartenberger J-L (1992) Evolution of mammalian faunas in Europe during the Eocene and Oligocene. In: Prothero DR, Berggren WA (eds) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, pp 516–528Google Scholar
  202. Lenton TM (2003) The coupled evolution of life and atmospheric oxygen. In: Rothschild LJ, Lister AM (eds) Evolution on planet earth, pp 35–53. Academic Press, Amsterdam, 438 ppCrossRefGoogle Scholar
  203. Lieberman BS (2003) Taking the pulse of the Cambrian radiation. Integrative and Comparative Biology (formerly American Zoologist) 43: 229–237CrossRefGoogle Scholar
  204. Lindsay JF, Brasier MD (2004) The evolution of the Precambrian atmosphere: Carbon isotopic evidence from the Australian continent. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The precambrian earth: Tempos and events, pp 388–403. Developments in Precambrian Geology 12. Elsevier, Amsterdam, 941 ppGoogle Scholar
  205. Lipps JH, Signor PW (1992) Origin and early evolution of the metazoa. Plenum Press, New YorkCrossRefGoogle Scholar
  206. Lo C-H, Chung S-L, Lee T-Y, Wu G (2002) Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events. Earth Planet Sci Lett 198: 449–458CrossRefGoogle Scholar
  207. Logan GA, Hayes JM, Hieshima GB, Summons RE (1995) Terminal Proterozoic reorganization of biogeochemical cycles. Nature 376: 53–56PubMedCrossRefGoogle Scholar
  208. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford, p 324Google Scholar
  209. Lucas SG (1994) Triassic tetrapod extinctions and the compiled correlation effect. Can Soc Petrol Geol Memoir 17: 869–875Google Scholar
  210. MacLeod N (1998) Impacts and marine invertebrate extinctions. In: Grady MM, Hutchinson R, McGall GJH, Rotherby DA (eds) Meteorites: Flux with time and impact effects. Geol Soc Lond Spec Publ 140: 217–246Google Scholar
  211. MacLeod N (2003) The causes of Phanerozoic extinctions. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth, pp 253–277. Academic Press, Amsterdam, 438 ppCrossRefGoogle Scholar
  212. MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffrey C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous-Tertiary biotic transition. J Geol Soc Lond 154: 265–292CrossRefGoogle Scholar
  213. Margulis L (1981) Symbiosis in cell evolution: Life and its environment on the early earth. W. H. Freeman, San Francisco, p 419Google Scholar
  214. Marshall CR (1990) Confidence intervals on stratigraphic ranges. Paleobiology 16: 1–10Google Scholar
  215. Martin F (1993) Acritarchs: A review. Biol Rev Camb Philos Soc 68: 475–538CrossRefGoogle Scholar
  216. Martin MW, Grazhdankin DV, Bowring SA, Evans DAD, Fedonkin MA, Kirschvink JL (2000) Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science 288: 841–845PubMedCrossRefGoogle Scholar
  217. Martin PS (1984) Prehistoric overkill: A global model. In: Martin PS, Klein RG (eds) Quarternary Extinctions. University of Arizona Press, Tucson, pp 354–403Google Scholar
  218. Martin RE (1996) Secular increase in nutrient levels through the Phanerozoic: Implications for productivity, biomass and diversity of the marine biosphere. Palaios 11: 209–219CrossRefGoogle Scholar
  219. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, De Min A (1999) Extensive 200-million-year-old continental flood basalts of the Central Atlantic magmatic province. Science 284: 616–618PubMedCrossRefGoogle Scholar
  220. May RM, Lawton JH, Stork NE (1995) Assessing extinction rates. In: Lawton JH, May RM (eds) Extinction rates. Oxford University Press, Oxford, pp 1–24Google Scholar
  221. McClendon JH (1999) The origin of life. Earth Sci Rev 47: 71–93CrossRefGoogle Scholar
  222. McGhee GR Jr. (1996) The Late Devonian mass extinction. Columbia University Press, New York, p 303Google Scholar
  223. McGhee GR Jr. (2001) Late Devonian extinction. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 223–226. Blackwell Science, Oxford, p 583CrossRefGoogle Scholar
  224. McKinney ML (1997) Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annu Rev Ecol Syst 28: 495–516CrossRefGoogle Scholar
  225. McKinney ML (2001) Selectivity during extinctions. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 198–202. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  226. McMenamin MAS, McMenamin DLS (1990) The emergence of animals: The Cambrian breakthrough. Columbia University Press, New York, p 217Google Scholar
  227. McNamara KJ, Awramik SM (1992) Stromatolites: A key to understanding the early evolution of life. Sci Prog 76: 345–364Google Scholar
  228. Mendelson CV, Schopf JW (1992) Proterozoic and selected Early Cambrian microfossils and microfossil-like objects. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: A multidisciplinary study. Cambridge University Press, Cambridge, pp 865–951CrossRefGoogle Scholar
  229. Miller AI (1997) Dissecting global diversity patterns: Examples from the Ordovician radiation. Annu Rev Ecol Syst 28: 85–104PubMedCrossRefGoogle Scholar
  230. Miller AI (1998) Biotic transitions in global marine diversity. Science 281: 1157–1160PubMedCrossRefGoogle Scholar
  231. Miller AI (2000) Conversations about Phanerozoic global diversity. In: Erwin DH, Wing SL (eds) Deep time: Paleobiology's perspective (supplement to paleobiology 26(4)). Paleontological Society/Allen Press, Lawrence, pp 53–73Google Scholar
  232. Miller AI (2001) Ordovician radiation. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 49–52. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  233. Miller, AI (2003) On the importance of global diversity trends and the viability of existing paleontological data. Paleobiology 29: 15–18CrossRefGoogle Scholar
  234. Miller AI (2004) The Ordovician radiation: Towards a new global synthesis. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great Ordovician biodiversification event. Columbia University Press, New York, pp 380–388Google Scholar
  235. Miller SL (1992) The prebiotic synthesis of organic compounds as a step toward the origin of life. In: Schopf JW (ed) Major events in the history of life, pp 1–28. Jones & Bartlett, Boston, 190 ppGoogle Scholar
  236. Miller SL, Lazcano A (2002) Formation of the building blocks of life. In: Schopf JW (ed) Life's origin: The beginnings of biological evolution. University of California Press, Berkeley, pp 78–112Google Scholar
  237. Mooers AØ, Redfield RJ (1996) Digging up the roots of life. Nature 379: 587–588PubMedCrossRefGoogle Scholar
  238. Narbonne GM (2004) Modular construction of early Ediacaran complex life forms. Science 305: 1141–1144PubMedCrossRefGoogle Scholar
  239. Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Planet Sci 33: 421–442CrossRefGoogle Scholar
  240. Narbonne GM, Gehling JG (2003) Life after snowball: The oldest complex Ediacaran fossils. Geology 31: 27–30CrossRefGoogle Scholar
  241. Nelson DR (2004) Earths formation and first billion years. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: Tempos and events, pp 3–27. Developments in Precambrian Geology 12. Elsevier, Amsterdam, 941 ppGoogle Scholar
  242. Newell ND (1967) Revolutions in the history of life. Geol Soc Am Spec Pap 89: 63–91Google Scholar
  243. Niklas KJ (1997) The evolutionary biology of plants. University of Chicago Press, ChicagoGoogle Scholar
  244. Niklas KJ (2004) Computer models of early land plant evolution. Annu Rev Earth Planet Sci 32: 47–66CrossRefGoogle Scholar
  245. Niklas KJ, Tiffney BH, Knoll AH (1983) Patterns in vascular land plant diversification. Nature 303: 614–616CrossRefGoogle Scholar
  246. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409: 1083–1091PubMedCrossRefGoogle Scholar
  247. Nisbet EG, Sleep NH (2003) The physical setting for early life. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth, pp 3–24. Academic Press, Amsterdam, 438 ppCrossRefGoogle Scholar
  248. Norris RD (2001) Impact of K-T boundary events on marine life. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 229–231. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  249. Nott MP, Rogers E, Pimm S (1995) Modern extinctions in the kilo-death range. Curr Biol 5(1): 14–17PubMedCrossRefGoogle Scholar
  250. Ogg JG (2004) Status of divisions of the international geologic time scale. Lethaia 37: 183–199CrossRefGoogle Scholar
  251. Ohmoto H (2004) The U.S atmosphere, hydrosphere and biosphere. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: Tempos and events, pp 361–388. Developments in Precambrian Geology 12. Elsevier, Amsterdam, 941 ppGoogle Scholar
  252. Olsen PE, Fowell SJ, Cornet B (1990) The Triassic/Jurassic boundary in continental rocks of eastern North America; a progress report. In: Sharpton VL, Ward PD (eds) Global catastrophes in earth history: An international conference on impacts, volcanism, and mass mortality. Geol Soc Am Spec Pap 247: 585–593Google Scholar
  253. Olsen PE, Koeberl C, Huber H, Montanari A, Fowell SJ, Et- Touhani M, Kent DV (2002) The continental Triassic-Jurassic boundary in central Pangea: Recent progress and preliminary report of an Ir anomaly. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: Impacts and beyond. Geol Soc Am Spec Pap 356: 505–522Google Scholar
  254. Oró J, Miller SL, Lazcano A (1990) The origin and early evolution of life on earth. Annu Rev Earth Planet Sci 18: 317–356PubMedCrossRefGoogle Scholar
  255. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740PubMedCrossRefGoogle Scholar
  256. Parker A (2003) In: the blink of an eye: The cause of the most dramatic event in the history of life. Free Press, London, p 316Google Scholar
  257. Payne JL, Lehrmann DJ, Wie J, Orchard MJ, Schrag DP, Knoll AH (2004) Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305: 506–509PubMedCrossRefGoogle Scholar
  258. Pennisi E (2003) Modernizing the tree of life. Science 300: 1692–1697PubMedCrossRefGoogle Scholar
  259. Peters SE, Foote M (2001) Biodiversity in the Phanerozoic: A reinterpretation. Paleobiology 27: 583–601CrossRefGoogle Scholar
  260. Peterson KJ, Butterfield NJ (2005) Origin of the eumetazoa: Testing ecological predictions of molecular clocks against the Proterozoic fossil record. Proc Natl Acad Sci 102: 9547–9552PubMedCentralPubMedCrossRefGoogle Scholar
  261. Peterson KJ, Lyons JB, Nowak KS, Takacs CM, Wargo MJ, McPeek MA (2004) Estimating metazoan divergence times with a molecular clock. Proc Natl Acad Sci 101: 6536–6541PubMedCentralPubMedCrossRefGoogle Scholar
  262. Pflug HD (1978) Früheste bisher bekannte Lebewesen: Isuasphaera isua n. gen. n. spec. aus der Isua-Serie von Grönland (ca. 3800 Mio. J.). Oberhessische naturwissenschaftliche Zeitschrift 44: 131–145Google Scholar
  263. Phillips J (1860) Life on the Earth. Macmillan Press, Cambridge and LondonGoogle Scholar
  264. Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269: 347–250PubMedCrossRefGoogle Scholar
  265. Poag CW, Mankinen E, Norris RD (2003) Late Eocene impacts: Geologic record, correlation, and paleoenvironmental consequences. In: Prothero DR, Ivany LC, Nesbitt EA (eds) From greenhouse to icehouse: The marine Eocene-Oligocene transition. Columbia University Press, New York, pp 495–510Google Scholar
  266. Porter SM, Knoll AH (2000) Testate amoebae in the Neoproterozoic era: Evidence from vase-shaped microfossils in the Chuar Group, Grand Canyon. Paleobiology 26: 360–385CrossRefGoogle Scholar
  267. Poulsen CJ (2003) Absence of runaway ice-albedo feedback in the Neoproterozoic. Geology 31: 473–476CrossRefGoogle Scholar
  268. Prothero DR (1994) The Eocene-Oligocene transition: Paradise lost. Columbia University Press, New York, p 291Google Scholar
  269. Rasmussen B, Bengtson S, Fletcher IR, McNaughton NJ (2002) Discoidal impressions and trace-like fossils more than 1200 million years old. Science 296: 1112–1115PubMedCrossRefGoogle Scholar
  270. Raup DM (1972) Taxonomic diversity during the Phanerozoic. Science 177: 1065–1071PubMedCrossRefGoogle Scholar
  271. Raup DM (1976a) Species diversity in the Phanerozoic: A tabulation. Paleobiology 2: 279–288Google Scholar
  272. Raup DM (1976b) Species diversity in the Phanerozoic: An interpretation. Paleobiology 2: 289–297Google Scholar
  273. Raup DM (1991a) A kill curve for Phanerozoic marine species. Paleobiology 17: 37–48PubMedGoogle Scholar
  274. Raup DM (1991b) Extinction: Bad genes or bad luck? Norton & Company, New York, p 210Google Scholar
  275. Raup DM, Sepkoski JJ Jr. (1982) Mass extinctions in the marine fossil record. Science 215: 1501–1503PubMedCrossRefGoogle Scholar
  276. Raup DM, Sepkoski JJ Jr. (1984) Periodicity of extinctions in the geologic past. Proc Natl Acad Sci 81: 801–805PubMedCentralPubMedCrossRefGoogle Scholar
  277. Raven J, Skene K (2003) Chemistry of the early oceans: The environment of early life. In: Rothschild LJ, Lister AM (eds) Evolution on planet Earth—the Impact of the physical environment, pp 55–64. Academic Press, Amsterdam, 438 ppCrossRefGoogle Scholar
  278. Retallack GJ (1995) Permian-Triassic life crisis on land. Science 267: 77–80PubMedCrossRefGoogle Scholar
  279. Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SHM, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD, Rodrigues ASL, Sechrest W, Wallace GE, Berlin K, Bielby J, Burgess ND, Church DR, Cox N, Knox D, Loucks C, Luck GW, Master LL, Moore R, Naidoo R, Ridgely R, Schatz GE, Shire G, Strand H, Wettengel W, Wikramanayake E (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci 102: 18497–18501PubMedCentralPubMedCrossRefGoogle Scholar
  280. Ridgwell A (2005) A mid-Mesozoic revolution in the regulation of ocean chemistry. Mar Geol 217: 339–357CrossRefGoogle Scholar
  281. Riding R (1991) Classification of microbial carbonates. In: Riding R (ed) Calcareous algae and stromatolites, pp 21–51. Springer Verlag, Berlin, 571 ppCrossRefGoogle Scholar
  282. Riding R (2000) Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47(suppl. 1): 179–214CrossRefGoogle Scholar
  283. Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431: 152–155PubMedCrossRefGoogle Scholar
  284. Rohde RA, Muller RA (2005) Cycles in fossil diversity. Nature 434: 208–210PubMedCrossRefGoogle Scholar
  285. Ronov AB (1983) The earth's sedimentary shell: Quantitative patterns of its structure, composition, and evolution. American Geological Institute (AGI Reprint series 5), Alexandria, 80 ppGoogle Scholar
  286. Roy K (2001) Pleistocene extinctions. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 234–237. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  287. Royer DL, Berner RA, Beerling DJ (2000) Phanerozoic atmospheric CO2 change: Evaluating geochemical and paleobiological approaches. Earth Sci Rev 54: 349–392CrossRefGoogle Scholar
  288. Rozanov AY, Zhuravlev AY (1992) The lower Cambrian fossil record of the Soviet Union. In: Lipps JH, Signor PW (eds) Origin and early evolution of the metazoa, pp 205–282. Topics in Geobiology 10. Plenum Press, New York, 570 ppCrossRefGoogle Scholar
  289. Sandberg CA, Morrow JR, Ziegler W (2002) Late Devonian sea-level changes, catastrophic events, and mass extinctions. In: Koeberl C, MacLeod KG (eds) Catastrophic events and mass extinctions: Impacts and beyond. Geol Soc Am Spec Pap 356: 473–487Google Scholar
  290. Schopf JW (1992a) The oldest fossils and what they mean. In: Schopf JW (ed) Major events in the history of life, pp 29–63. Jones & Bartlett, Boston, 190 ppGoogle Scholar
  291. Schopf JW (1992b) Atlas of representative Proterozoic microfossils. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: A multidisciplinary study. Cambridge University Press, Cambridge, pp 1055–1117CrossRefGoogle Scholar
  292. Schopf JW (1993) Microfossils of the early U.S Apex Chert: New evidence of the antiquity of life. Science 260: 640–646PubMedCrossRefGoogle Scholar
  293. Schopf JW (1999) Cradle of life: The discovery of earth's earliest fossils. Princeton University Press, Princeton, p 367Google Scholar
  294. Schopf JW (2002) When did life begin? In: Schopf JW (ed) Life's origin: The beginnings of biological evolution. University of California Press, Berkeley, pp 158–179Google Scholar
  295. Schopf JW (2004) Earth's earliest biosphere: Status of the hunt. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: Tempos and events, pp 516–539. Developments in Precambrian Geology 12, Elsevier, Amsterdam, 941 ppGoogle Scholar
  296. Schubert JK, Bottjer DJ (1992) Early triassic stromatolites as post-mass extinction disaster forms. Geology 20: 883–886CrossRefGoogle Scholar
  297. Schwartz AW, Chang S (2002) From Big Bang to primordial planet. Setting the stage for the origin of life. In: Schopf JW (ed) Life's origin: The beginnings of biological evolution. University of California Press, Berkeley, pp 46–77Google Scholar
  298. Seilacher A (1989) Vendozoa: Organismic construction in the Proterozoic biosphere. Lethaia 22: 229–239CrossRefGoogle Scholar
  299. Seilacher A (1992) Vendobionta and psammocorallia: Lost constructions of Precambrian evolution. J Geol Soc Lond 149: 607–613CrossRefGoogle Scholar
  300. Seilacher A (1999) Biomat-related lifestyles in the Precambrian. Palaios 14: 86–93CrossRefGoogle Scholar
  301. Seilacher A, Bose PK, Pfüger F (1998) Triploblastic animals more than 1 billion years ago: Trace fossil evidence from India. Science 282: 80–83PubMedCrossRefGoogle Scholar
  302. Sepkoski JJ Jr. (1978) A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4: 223–251Google Scholar
  303. Sepkoski JJ Jr. (1979) A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5: 222–251Google Scholar
  304. Sepkoski JJ Jr. (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7: 36–53Google Scholar
  305. Sepkoski JJ Jr. (1982) A compendium of fossil marine families. Milwaukee Public Museum Contrib Biol Geol 51: 1–125Google Scholar
  306. Sepkoski JJ Jr. (1984) A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10: 246–267Google Scholar
  307. Sepkoski JJ Jr. (1988) Alpha, beta, or gamma: Where does all the diversity go? Paleobiology 14: 221–234PubMedGoogle Scholar
  308. Sepkoski JJ Jr. (1990) Periodicity. In: Briggs DEG, Crowther PR (eds) Palaeobiology—a synthesis, pp 171–179. Blackwell Scientific Publications, Oxford, 583 ppGoogle Scholar
  309. Sepkoski JJ Jr. (1992) A compendium of fossil marine families, 2nd edn. Milwaukee Public Museum Contrib Biol Geol 83: 1–156Google Scholar
  310. Sepkoski JJ Jr. (1996) Patterns of Phanerozoic extinction: A perspective from global data bases. In: Walliser OH, (ed) Global events and event stratigraphy. Springer Verlag, Berlin, pp 31–51Google Scholar
  311. Sepkoski JJ Jr. (1997) Biodiversity: Past, present, and future. J. Paleontol 71: 533–539PubMedGoogle Scholar
  312. Sepkoski JJ Jr. (2002) A compendium of fossil marine animal genera In: Jablonski D, Foote M (eds) Bull Am Paleontol 363: 1–563Google Scholar
  313. Sepkoski JJ Jr. Bambach RK, Raup DM, Valentine JW (1981) Phanerozoic marine diversity and the fossil record. Nature 293: 435–437CrossRefGoogle Scholar
  314. Sheehan PM (1996) A new look at ecological evolutionary unites (EEUs). Palaeogeogr Palaeoclimatol Palaeoecol 127: 21–32CrossRefGoogle Scholar
  315. Sheehan PM (2001a) History of marine biodiversity. Geol J 36: 231–249CrossRefGoogle Scholar
  316. Sheehan PM (2001b) The Late Ordovician mass extinction. Annu Rev Ecol Syst 29: 331–364Google Scholar
  317. Sheehan PM, Harris MT (2004) Microbialite resurgence after the Late Ordovician extinction. Nature 430: 75–78PubMedCrossRefGoogle Scholar
  318. Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archean era. Nature 410: 77–81PubMedCrossRefGoogle Scholar
  319. Sheridan PP, Freeman KH, Brenchley JE (2003) Estimated minimal divergence times of the major bacterial and archaeal phyla. Geomicrobiol J 20: 1–14CrossRefGoogle Scholar
  320. Signor PW (1985) Real and apparent trends in species richness through time. In: Valentine JW (ed) Phanerozoic diversity patterns: Profiles in macroevolution, pp 129–150. Princeton University Press, Princeton, 441 ppGoogle Scholar
  321. Signor PW (1990) The geologic history of diversity. Annu Rev Ecol Syst 21: 509–539CrossRefGoogle Scholar
  322. Signor PW, Lipps JH (1982) Sampling bias, gradual extinction patterns and catastrophes in the fossil record. Geol Soc Am Spec Pap 190: 291–296Google Scholar
  323. Simonson BM (2003) Origin and evolution of large Precambrian iron formations. Geol Soc Am Spec Pap 370: 231–244Google Scholar
  324. Simpson GG (1960) The history of life. In: Tax S (ed) Evolution after Darwin. vol I: The evolution of life: Its origin, history and future, pp 117–180. University of Chicago Press, Chicago, 629 ppGoogle Scholar
  325. Skelton PW (2003) Changing climate and biota—the marine record. In: Skelton PW (ed) The cretaceous world, The Open University. Cambridge University Press, Cambridge, pp 163–184Google Scholar
  326. Smith AB (2001) Large-scale heterogeneity of the fossil record: Implications for Phanerozoic biodiversity studies. Philos Trans R Soc Lond B 356: 351–367CrossRefGoogle Scholar
  327. Smith AB (2003) Getting the measure of diversity. Paleobiology 29: 34–36CrossRefGoogle Scholar
  328. Stanley GD Jr. (2001) Introduction to reef ecosystems and their evolution. In: Stanley GD Jr. (eds) The history and sedimentology of ancient reef systems, pp 1–39. Topics in Geobiology 17. Academic/Plenum Publishers, New York, 458 ppCrossRefGoogle Scholar
  329. Stanley SM (1973) An ecological theory for the sudden origin of multicellular life in the late Precambrian. Proc Natl Acad Sci 70: 1486–1489PubMedCentralPubMedCrossRefGoogle Scholar
  330. Stanley SM (1977) Trends, rates, and patterns of evolution in the Bivalvia. In: Hallam A (ed) Patterns of evolution as illustrated by the fossil record, pp 209–250. Developments in Palaeontology and Stratigraphy 5. Elsevier, AmsterdamCrossRefGoogle Scholar
  331. Stanley SM (1988) Paleozoic mass extinctions: Shared patterns suggest global cooling as a common cause. Am J Sci 288: 334–352CrossRefGoogle Scholar
  332. Stanley SM (2005) Earth system history, 2nd edn. Freeman, New York, p 567Google Scholar
  333. Stehlin HG (1909) Remarques sur les faunules de mammifères des couches éocènes et oligocènes du Bassin de Paris. Bulletin de la Societé Géologique de France 4(9): 488–520Google Scholar
  334. Stokstad E (2004) Controversial fossil could shed light on early animals’ blueprint. Science 304: 1425PubMedCrossRefGoogle Scholar
  335. Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic extinctions. Earth Sci Rev 65: 103–139CrossRefGoogle Scholar
  336. Taylor PD (2004) Extinction and the fossil record. In: Taylor PD (ed) Extinctions in the history of life, pp 1–34. Cambridge University Press, Cambridge, 191 ppCrossRefGoogle Scholar
  337. Taylor WR (2005) Stirring the primordial soup. RNA world: Does changing the direction of replication make RNA life viable? Nature 434: 705PubMedCrossRefGoogle Scholar
  338. Teichert C (1990) The Permian-Triassic boundary revisited. In: Kauffman EG, Walliser OH (eds) Extinction events in earth history. Springer Verlag, Berlin, pp 199–238CrossRefGoogle Scholar
  339. Thayer CW (1983) Sediment-mediated biological disturbance and the evolution of marine benthos. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities, pp 479–595. Topics in Geobiology 3. Plenum Press, New York, 837 ppCrossRefGoogle Scholar
  340. Thomas ALR (1997) The breath of life—did increased oxygen levels trigger the Cambrian Explosion? Trends Ecol Evol 12: 44–45PubMedCrossRefGoogle Scholar
  341. Twitchett RJ (1999) Palaeoenvironments and faunal recovery after the end-Permian mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 154: 27–37CrossRefGoogle Scholar
  342. Twitchett RJ (2006) The palaeoclimatology, palaeoecology and palaeoenvironmental analysis of mass extinction events. Palaeogeogr Palaeoclimatol Palaeoecol 232: 190–213Google Scholar
  343. Valentine JW (1969) Patterns of taxonomic and ecological structure of the shelf benthos during Phanerozoic time. Paleobiology 12: 684–709Google Scholar
  344. Valentine JW (1985) Phanerozoic diversity patterns: Profiles in macroevolution. Princeton University Press, Princeton, p 441Google Scholar
  345. Valentine JW (2002) Prelude to the Cambrian explosion. Annu Rev Earth Planet Sci 30: 285–306CrossRefGoogle Scholar
  346. Valentine JW (2004) On the origin of phyla. Chicago University Press, Chicago, p 614Google Scholar
  347. Valentine JW, Collins AG, Meyer CP (1994) Morphological complexity increase in metazoans. Paleobiology 20: 131–142Google Scholar
  348. Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: New perspectives on the Cambrian explosion. Development 126: 851–859PubMedGoogle Scholar
  349. Vermeij GJ (1977) The Mesozoic marine revolution: Evidence from snails, predators and grazers. Paleobiology 3: 245–258Google Scholar
  350. Vermeij GJ (1987) Evolution and escalation: An ecological history of life. Princeton University Press, Princeton, p 527Google Scholar
  351. Vermeij GJ (1995) Economics, volcanous, and Phanerozoic revolutions. Paleobiology 21: 125–152Google Scholar
  352. Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y, Looy CV, Rampino MR, Traverse A (1996) The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci 93: 2155–2158PubMedCentralPubMedCrossRefGoogle Scholar
  353. Wächtershäuser G (2000) Origin of life: Life as we don't know it. Science 289: 1307–1308PubMedCrossRefGoogle Scholar
  354. Wade M (1972a) Dickinsonia: Polychaete worms from the late Precambrian Ediacara fauna, South Australia. Memoirs Qld Museum 16: 171–190Google Scholar
  355. Wade M (1972b) Hydrozoa and scyphozoa and other medusoids from the Precambrian Ediacara fauna, South Australia. Palaeontology 15: 197–225Google Scholar
  356. Walliser OH (1996) Global events in the Devonian and carboniferous. In: Walliser OH (ed) Global events and event stratigraphy. Springer Verlag, Berlin, pp 225–250CrossRefGoogle Scholar
  357. Walter M (1995) Faecal pellets in world events. Nature 376: 16–17CrossRefGoogle Scholar
  358. Walter MR (1976) Introduction. In: Walter MR (ed) Stromatolites, developments in sedimentology, vol 20. Elsevier, Amsterdam, pp 1–3Google Scholar
  359. Walter MR (1983) U.S stromatolites: Evidence of the earth's earliest benthos. In: Schopf JW (ed) Earth's earliest biosphere, its origin and evolution. Princeton University Press, Princeton, pp 187–213Google Scholar
  360. Walter MR (2001) Stromatolites. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 376–379. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  361. Wang DY-C, Kumar S, Hedges SB (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc R Soc Lond B Biol Sci 266: 163–71CrossRefGoogle Scholar
  362. Wang SC (2003) On the continuity of background and mass extinction. Paleobiology 29: 455–467CrossRefGoogle Scholar
  363. Ward PD (1981) Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7: 96–100Google Scholar
  364. Ward PD (1983) The extinction orf ammonites. Sci Am 249: 136–147CrossRefGoogle Scholar
  365. Ward PD (1990) The Cretaceous/Tertiary extinction in the marine realm: A1990 perspective. Geol Soc Am Spec Pap 247: 425–432Google Scholar
  366. Ward PD, Botha J, Buick R, De Kock MO, Erwin DH, Garrison GH, Kirschvink JL, Smith R (2005) Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307: 709–714PubMedCrossRefGoogle Scholar
  367. Webby BD (2004) Introduction. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great Ordovician biodiversification event. Columbia University Press, New York, pp 1–37Google Scholar
  368. Westrop SR, Adrain JM (1998) Trilobite alpha diversity and the reorganization of Ordovician benthic marine communities. Paleobiology 24: 1–16Google Scholar
  369. White RV (2002) Earth's biggest ‘whodunnit’: Unravelling the clues in the case of the end-Permian mass extinction. Philos Trans R Soc Lond A 360: 2963–2985CrossRefGoogle Scholar
  370. Wignall PB (2001a) Large igneous provinces and mass extinctions. Earth Sci Rev 53: 1–33CrossRefGoogle Scholar
  371. Wignall PB (2001b) End-Permian extinction. In: Briggs DEG, Crowther PR (eds) Palaeobiology II, pp 226–229. Blackwell Science, Oxford, 583 ppCrossRefGoogle Scholar
  372. Wignall PB (2004) Causes of mass extinction. In: Taylor PD (ed) Extinctions in the history of life, pp 119–150. Cambridge University Press, Cambridge, 191 ppCrossRefGoogle Scholar
  373. Wignall PB, Hallam A (1999) Lazarus taxa and fossil abundance at times of biotic crisis. J Geol Soc Lond 156: 453–456CrossRefGoogle Scholar
  374. Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end-Permian mass extinction. Science 272: 1155–1158PubMedCrossRefGoogle Scholar
  375. Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, OxfordGoogle Scholar
  376. Wills MA (2001) Morphological disparity: A primer. In: Adrain JM, Edgecombe GD, Lieberman BS (eds) Fossils, phylogeny, and form. Topics in Geobiology 19. Kluwer Academic/Plenum Publishers, New York, pp 55–144CrossRefGoogle Scholar
  377. Wills MA, Briggs DEG, Fortey RA (1994) Disparity as an evolutionary index: A comparison of Cambrian and recent arthropods. Paleobiology 20: 93–130Google Scholar
  378. Wilson EO (1994) The diversity of life. Penguin Books, London, p 406Google Scholar
  379. Wilson MA, Palmer, TJ (2001) The Ordovician bioerosion revolution. Geol Soc Am Abstr Prog 33(6): A248Google Scholar
  380. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci 95: 6854–6859PubMedCentralPubMedCrossRefGoogle Scholar
  381. Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci 95: 8742–8747CrossRefGoogle Scholar
  382. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: Proposals for the domains of Archaea, bacteria, and eucarya. Proc Natl Acad Sci 87: 4576–4579PubMedCentralPubMedCrossRefGoogle Scholar
  383. Xian-guang H, Aldridge RJ, Bergström J, Siveter DJ, Xiang-hong F (2004) The Cambrian fossils of Chengjiang, China: The flowering of early animal life. Blackwell Publishing, Malden, p 233Google Scholar
  384. Xiao SH, Zhang Y, Knoll AH (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391: 553–558CrossRefGoogle Scholar
  385. Young GM (2004) Earth's two great Precambrian glaciations: Aftermath of the “snowball earth” hypothesis. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian earth: Tempos and events, pp 440–448. Developments in Precambrian Geology 12. Elsevier, Amsterdam, 941 ppGoogle Scholar
  386. Zachos J, Arthur MA, Dean WE (1989) Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337: 61–64CrossRefGoogle Scholar
  387. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693PubMedCrossRefGoogle Scholar
  388. Zhuravlev AY, Riding R (eds) (2001) The ecology of the Cambrian radiation. Columbia University Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2007

Authors and Affiliations

  • Walter Etter

There are no affiliations available

Personalised recommendations