10 Chronometric Methods in Paleoanthropology

  • Günther A. Wagner
Reference work entry


The aim of archeochronometry is the numeric dating, that is in term of years, of archeological and paleoanthropologic events or processes. The methods that are currently applied with most success are all based on the physical phenomenon of radioactivity. Their development underwent in the last few decades—and still undergoes—rapid progress. It is, in particular, the improvement in time resolution but also the application to novel sample materials as well as the extension of the age range of numeric dating that left a strong impact on modern paleoanthropology. This contribution introduces into the principles of radiometric dating. The most frequently applied dating methods, such as the potassium–argon, the uranium series, the fission track, the luminescence, the electron spin resonance, and radiocarbon techniques, are described. Their potential for paleoanthropology is illustrated using various examples covering the period since human entered the scene few million years ago.


Electron Spin Resonance Electron Spin Resonance Spectrum Optically Stimulate Luminescence Fission Track Paleolithic Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aitken MJ (1985) Thermoluminescence dating. Academic Press, LondonGoogle Scholar
  2. Aitken MJ (1998) An introduction to optical dating. Oxford University Press, OxfordGoogle Scholar
  3. Bard E, Rostek F, Menot-Combes G (2004) Radiocarbon calibration beyond 20,000 14C yr B.P. by means of planktonic foraminifera of the Iberian Margin. Quaternary Res 61: 204–214CrossRefGoogle Scholar
  4. Beck JW, Richards DA, Edwards RL, Silverman BW, Smart PL, Donahue DJ, Hererra-Osterheld S, Burr GS, Calsoyas L, Jull AJT, Biddulph D (2001) Extremely large variations of atmospheric 14C concentration during the last glacial period. Science 292: 2453–2458CrossRefPubMedGoogle Scholar
  5. Bischoff JL, Shamp DD, Aramburu A, Arsuaga JM, Carbonell E, Bermudez de Castro JM (2003) The Sima de los Huesos hominids date to beyond U/Th equilibrium (>350 ka) and perhaps to 400–500 kyr: New radiometric dates. J Archaeol Sci 30: 275–280CrossRefGoogle Scholar
  6. Chen Y, Smith EP, Evensen NM, York D, Lajoie KR (1996) The edge of time: Dating young volcanic ash layers with the 40Ar–39Ar laser probe. Science 274: 1176–1178CrossRefPubMedGoogle Scholar
  7. Clark JD, Beyene Y, WoldeGabriels G, Hart WK, Renne PR, Gilbert H, Defleur A, Suwa G, Katoh S, Ludwig KR, Boisserie JR, Asfaw B, White TD (2003) Stratigraphic, chronological and behavioural contexts of Pleistocene Homo sapiens from Middle Awash, Ethipia. Nature 423: 747–752CrossRefPubMedGoogle Scholar
  8. Clottes J, Chauvet JM, Brunel-Deschamps E, Hillaire C, Daugas JP, Arnold M, Cachier H, Evin J, Fortin P, Oberlin C, Tisnerat N, Valladas H (1995) The Palaeolithic paintings of the Chauvet-Pont-D'Arc cave, at Vallon-Pont D'Arc (Ardeche, France): Direct and indirect radiocarbon dating. Comptes Rendus Acad Sci Paris 320: 1133–1140Google Scholar
  9. Conard NJ, Bolus M (2003) Radiocarbon dating the appearance of modern humans and timing of cultural innovations in Europe: New results and new challenges. J Human Evol 44: 331–371CrossRefGoogle Scholar
  10. Conard NJ, Grootes PM, Smith FH (2004) Unexpected recent dates from human remains from Vogelherd. Nature 430: 198–201CrossRefPubMedGoogle Scholar
  11. Curnoe D, Grün R, Taylor L, Thacheray F (2001) Direct ESR dating of a Pliocene hominin from Swartkrans. J Human Evol 40: 379–391CrossRefGoogle Scholar
  12. Curtis GH, Drake T, Cerling TE, Cerling BL, Hampel JH (1975) Age of KBS tuff in Koobi Fora formation, East Rudolf, Kenya. Nature 258: 395–398CrossRefGoogle Scholar
  13. Daniels F, Boyd CA, Saunders DF (1953) Thermoluminescence as a research tool. Science 117: 343–349CrossRefPubMedGoogle Scholar
  14. de Lumley H, Lordkipanidze D, Feraud D, Garcia T, Perrenoud C, Falgueres C, Gagnepain J, Saos T, Voinchet P (2002) 40Ar/39Ar dating of the Dmanisi (Georgia) hominid-bearing volcanic ash levels (Layer iV): 1.81 Ma. C. R. Palevol 1: 181–189CrossRefGoogle Scholar
  15. Edwards RL, Chen JH, Wasserburg GJ (1986/87) 238U–234U–230Th–232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett 81: 175–192CrossRefGoogle Scholar
  16. Falguères C (2003) ESR dating and the human evolution: Contribution to the chronology of the earliest humans in Europe. Quaternary Sci Rev 22: 1345–1351CrossRefGoogle Scholar
  17. Falguères C, Bahain JJ, Saleki H (1997) U-series and ESR dating of teeth from Acheulian and Mousterian levels at La Micoque (Dordogne, France). J Archaeol Sci 24: 537–545CrossRefGoogle Scholar
  18. Falguères C, Bahain JJ, Yokoyama Y, Arsuaga JM, Bermuudez de Castro JM, Carbonell E, Bischoff JL, Dolo JM (1999) Earliest humans in Europe: The age of TD6 Gran Dolina, Atapuerca, Spain. J Human Evol 37: 343–352CrossRefGoogle Scholar
  19. Falguères C, Yokoyama Y, Shen G, Bischoff JL, Ku TL, de Lumley H (2004) New U-series dates at the Caune de l'Arago. J Archaeol Sci 31: 941–952CrossRefGoogle Scholar
  20. Fitch FJ, Miller JA (1970) New hominid remains and early artefacts from northern Kenya. Nature 226: 223–228CrossRefGoogle Scholar
  21. Fullagar RLK, Price DM, Head LM (1996) Early human occupation in northern Australia: Archaeology and thermoluminescence dating of Jinmium rock-shelter, Northern Territory. Antiquity 70: 751–773Google Scholar
  22. Gleadow AJW (1980) Fission track age of the KBS tuff and associated hominid remains in northern Kenya. Nature 284: 225–230CrossRefGoogle Scholar
  23. Greilich S, Glasmacher UA, Wagner GA (2002) Spatially resolved detection of luminescence: A unique tool for archaeochrometry. Naturwissenschaften 89: 371–375CrossRefPubMedGoogle Scholar
  24. Greilich S, Glasmacher UA, Wagner GA (2005) Optical dating of granitic stone surfaces. Archaeometry 47: 645–665CrossRefGoogle Scholar
  25. Grün R, Stringer CB (1991) Electron spin resonance dating and the evolution of modern humans. Archaeometry 33: 153–199CrossRefGoogle Scholar
  26. Grün R, Schwarcz HP, Chadam J (1988) ESR dating of tooth enamel: Coupled correction for U-uptake and U-series disequilibrium. Nucl Tracks Radiat Meas 14: 237–241CrossRefGoogle Scholar
  27. Guo SL, Liu SS, Sun FS, Zhang F, Zhou SH, Hao XH, Hu RY, Meng W, Zhang PF, Liu JF (1991) Age and duration of Peking man site by fission track method. Nucl Tracks Radiat Meas 19: 719–724CrossRefGoogle Scholar
  28. Hennig GJ, Grün R (1983) ESR dating in quaternary geology. Quaternary Sci Rev 2: 157–238CrossRefGoogle Scholar
  29. Hurford AJ, Gleadow AJW, Naeser CW (1976) Fission-track dating of pumice from the KBS Tuff, East Rudolf, Kenya. Nature 263: 738–740CrossRefGoogle Scholar
  30. Ivanovich M, Harmon S (1992) Uranium-series disequilibrium: Applications to earth, marine, and environmental sciences. Clarendon Press, OxfordGoogle Scholar
  31. Jacobs Z, Duller GAT, Wintle AG (2003) Optical dating of dune sand from Blombos Cave, South Africa: II—single grain data. J Human Evol 44: 613–625CrossRefGoogle Scholar
  32. Kappelman J, Swisher CC, III Fleagle JG, Yirga S, Bown TM, Feseha M (1996) Age of Australopithecus afarensis from Fejej, Ethiopia. J Human Evol 30: 139–146CrossRefGoogle Scholar
  33. Libby WF (1952) Radicarbon dating. University of Chicago Press, ChicagoGoogle Scholar
  34. Mallick R, Frank N (2002) A new technique for precise uranioum-series dating of travertine micro-samples. Geochim Cosmochim Acta 66: 4261–4272CrossRefGoogle Scholar
  35. McDermott F, Grün R, Stringer CB, Hawkesworth CJ (1993) Mass-spectrometric U-series dates for Israeli Neanderthal/early modern hominid sites. Nature 363: 252–255CrossRefPubMedGoogle Scholar
  36. McDougall I (1985) K-Ar and 40Ar/39Ar dating of the hominid-bearing Pliocene-Pleistocene sequence at Koobi Fora, Lake Turkana, northern Kenya. Geol Soc Amer Bull 96: 159–175CrossRefGoogle Scholar
  37. Mercier N, Valladas H, Bar-Yosef O, Vandermeersch B, Stringer CB, Joron JL (1993) Thermoluminescence date for the Mousterian burial site of Es-Skhul, Mt. Carmel. J Archaeol Sci 20: 169–174CrossRefGoogle Scholar
  38. Mercier N, Valladas H (2003) Reassessment of TL age estimates of burnt flints form the Paleolithic site of Tabun Cave, Israel. J Human Evol 45: 401–409CrossRefGoogle Scholar
  39. Morwood MJ, O'Suulivan PB, Aziz F, Raza A (1998) Fission-track ages of stone tools and fossis on the east Indonesian island of Flores. Nature 392: 173–176CrossRefGoogle Scholar
  40. Murray AS, Wintle AG (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiat Meas 32: 57–73CrossRefGoogle Scholar
  41. Porat N, Zhou LP, Chazan M, Nyo T, Horwitz LK (1999) Dating the lower Palaeolithic open-air site of Holon, Israel by luminescence and ESR techniques. Quaternary Res 51: 328–341CrossRefGoogle Scholar
  42. Reimer PJ, Hughen KA, Guilderson TP, McCormac G, Baillie MGL, Bard E, Barrat P, Beck W, Buck CE, Damon PE, Friedrich M, Kromer B, Bronk-Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Plicht van der (2002) Preliminary report on the first workshop of the IntCal04 radiocarbon calibration/Comparison working group. Radiocarbon 44: 653–661Google Scholar
  43. Richter D, Waiblinger J, Rink WJ, Wagner GA (2000) Thermoluminescence, electron spin resonance and 14C dating of the Late Middle and Early Upper palaeolithic site of Geiβenklösterle cave in southern Germany. J Archaeol Sci 27: 71–89CrossRefGoogle Scholar
  44. Rink WJ (1997) Electron spin resonance (ESR) dating and ESR applications in Quaternary science and archaeometry. Radiat Meas 27: 975–1025CrossRefGoogle Scholar
  45. Rink WJ, Schwarcz HP, Ronen A, Tsatskin A (2004) Confirmation of a near 400 ka age for the Yabrudian industry at Tabun cave, Israel. J Archaeol Sci 31: 15–20CrossRefGoogle Scholar
  46. Roberts R, Walsh G, Murray AS, Olley J, Jones R, Morwood M, Tuniz C, Lawson E, Macphail M, Bowdery D, Naumann I (1997) Luminescence dating of rock art and past environments using mud-wasps nests in northern Australia. Nature 387: 696–699CrossRefGoogle Scholar
  47. Roberts RG, Yoshida H, Galbraith RF, Laslett GM, Jones R, Smith M (1998) Single-aliquot and single-grain optical dating confirm thermoluminescence age estimates at Malakunanja II rock shelter in northern Australia. Ancient TL 16: 19–24Google Scholar
  48. Roberts RG, Galbraith RF, Olley JM, Yoshida H, Laslett GM (1999) Optical dating of single and multiple grains from Jinmium rock shelter, northern Australia: Part II, results and implications. Archaeometry 41: 365–395CrossRefGoogle Scholar
  49. Schwarcz HP (1989) Uranium series dating of Quaternary deposits. Quat Int 1: 7–17CrossRefGoogle Scholar
  50. Schwarcz HP, Grün R, Latham AG, Mania D, Brunnacker K (1988) The Bilzingsleben archaeological site: New dating evidence. Archaeometry 30: 5–17CrossRefGoogle Scholar
  51. Semah S, Saleki H, Falgueres C (2000) Did early man reach java during the Late Pleistocene? J Archaeol Sci 27: 763–769CrossRefGoogle Scholar
  52. Semaw S, Rogers MJ, Quade J, Renne PR, Butler RF, Dominguez-Rodrigo M, Stout D, Hart WS, Pickering T, Simpson SW (2003) 2.6-million-year-old stone tools and associated bones from OGS-6 and OGS-7, Gona, Afar, Ethiopia. J Human Evol 45: 169–177CrossRefGoogle Scholar
  53. Shen G, Ku TL, Cheng H, Edwards RL, Yuan Z, Wang Q (2001) High-precision U-series dating of locality 1 at Zhoukoudian, China. J Human Evol 41: 679–688CrossRefGoogle Scholar
  54. Shen G, Wang W, Wang Q, Zhao J, Collerson K, Zhou C, Tobias PV (2002) U-series dating of Liujiang hominid site in Guangxi, southern China. J Human Evol 43: 817–829CrossRefGoogle Scholar
  55. Smits F, Gentner W (1950) Argonbestimmungen an Kaliummineralen, I: Bestimmungen an tertiären Kalisalzen. Geochim Cosmochim Acta 1: 22–27CrossRefGoogle Scholar
  56. Stuiver M, Reimer PJ, Bard E, Beck W, Burr G, Hughen K, Kromer B, McCormac G, van der Plicht J, Spurk M (1998) INTCAL98 radiocarbon age calibration. Radiocarbon 40: 1041–1083Google Scholar
  57. Swisher CC III, Curtis GH, Jacob T, Getty AG, Suprijo AW (1994) Age of the earliest known hominids in Java, Indonesia. Science 263: 1118–1121CrossRefPubMedGoogle Scholar
  58. Valdes VC, Bischoff JL (1989) Accelerator 14C dates for Early Upper Paleolithic (Basal Aurignacien) at El Castillo Cave (Spain). J Archaeol Sci 16: 577–584CrossRefGoogle Scholar
  59. von Koenigswald GHR, Gentner W, Lippolt HJ (1961) Age of the basalt flow at Olduvai, East Africa. Nature 192: 720–721CrossRefGoogle Scholar
  60. Wagner GA (1998) Age determination of young rocks and artifacts—Physical and chemical clocks in Quaternary geology and archaeology. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  61. Wagner GA, Van den haute P (1992) Fission-rack dating. Enke, StuttgartCrossRefGoogle Scholar
  62. Walter RC, Manega PC, Hay RL, Drake RE, Curtis GH (1991) Laser fusion 40Ar/39Ar dating of Bed I, Olduvai Gorge, Tanzania. Nature 354: 145–149CrossRefGoogle Scholar
  63. Zeller EJ, Levy PW, Mattern PL (1967) Geologic dating by electron spin resonance. IAEA Wien, 531–540Google Scholar
  64. Zöller L, Conard NJ, Hahn J (1991) Thermoluminescence dating of Middle Palaeolithic open air sites in the middle Rhine valley/Germany. Naturwissenschaften 78: 408–410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg New York 2007

Authors and Affiliations

  • Günther A. Wagner

There are no affiliations available

Personalised recommendations