Skip to main content

Robot Programming by Demonstration

  • Reference work entry
Springer Handbook of Robotics

Abstract

Robot programming by demonstration (PbD) has become a central topic of robotics that spans across general research areas such as human-robot interaction, machine learning, machine vision and motor control.

Robot PbD started about 30 years ago, and has grown importantly during the past decade. The rationale for moving from purely preprogrammed robots to very flexible user-based interfaces for training robots to perform a task is three-fold.

First and foremost, PbD, also referred to as imitation learning, is a powerful mechanism for reducing the complexity of search spaces for learning. When observing either good or bad examples, one can reduce the search for a possible solution, by either starting the search from the observed good solution (local optima), or conversely, by eliminating from the search space what is known as a bad solution. Imitation learning is, thus, a powerful tool for enhancing and accelerating learning in both animals and artifacts.

Second, imitation learning offers an implicit means of training a machine, such that explicit and tedious programming of a task by a human user can be minimized or eliminated (Fig. 59.1). Imitation learning is thus a natural means of interacting with a machine that would be accessible to lay people.

Left: A robot learns how to make a chess move (namely moving the queen forward) by generalizing across different demonstrations of the task performed in slightly different situations (different starting positions of the hand). The robot records its jointsʼ trajectories and learns to extract what-to-imitate, i.e. that the task constraints are reduced to a subpart of the motion located in a plane defined by the three chess pieces. Right: The robot reproduces the skill in a new context (for different initial position of the chess piece) by finding an appropriate controller that satisfies both the task constraints and constraints relative to its body limitation (how-to-imitate problem), adapted from [59.1]

Third, studying and modeling the coupling of perception and action, which is at the core of imitation learning, helps us to understand the mechanisms by which the self-organization of perception and action could arise during development. The reciprocal interaction of perception and action could explain how competence in motor control can be grounded in rich structure of perceptual variables, and vice versa, how the processes of perception can develop as means to create successful actions. PbD promises were thus multiple. On the one hand, one hoped that it would make learning faster, in contrast to tedious reinforcement learning methods or trials-and-error learning. On the other hand, one expected that the methods, being user-friendly, would enhance the application of robots in human daily environments. Recent progresses in the field, which we review in this chapter, show that the field has made a leap forward during the past decade toward these goals. In addition, we anticipate that these promises may be fulfilled very soon.

Section 59.1 presents a brief historical overview of robot Programming by Demonstration (PbD), introducing several issues that will be discussed later in this chapter. Section 59.2 reviews engineering approaches to robot PbD with an emphasis on machine learning approaches that provide the robot with the ability to adapt the learned skill to different situations (Sect. 59.2.1). This section discusses also the different types of representation that one may use to encode a skill and presents incremental learning techniques to refine the skill progressively (Sect. 59.2.4). Section 59.2.3 emphasizes the importance to give the teacher an active role during learning and presents different ways in which the user can convey cues to the robot to help it to improve its learning. Section 59.2.4 discusses how PbD can be jointly used with other learning strategies to overcome some limitations of PbD. Section 59.3 reviews works that take a more biological approach to robot PbD and develops models of either the cognitive or neural processes of imitation learning in primates. Finally, Sect. 59.4 lists various open issues in robot PbD that have yet been little explored by the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AISB:

artificial intelligence and simulation o behavior

AR:

augmented reality

BIOROB:

biomimetic robotics

EM:

expectation maximization

EO:

elementary operators

GMM:

Gaussian mixture model

GMR:

Gaussian mixture regression

GP:

Gaussian processes

HMM:

hidden Markov model

HRI:

human–robot interaction

ICA:

independent component analysis

LWR:

locally weighted regression

ML:

machine learning

ML:

maximum likelihood

MNS:

mirror neuron system

PCA:

principle components analysis

PbD:

programming by demonstration

RBF:

radial basis function

RFWR:

receptive field weighted regression

RL:

reinforcement learning

VR:

virtual reality

References

  1. S. Calinon, F. Guenter, A. Billard: On Learning Representing and Generalizing a Task in a Humanoid Robot, IEEE Trans. Syst. Man Cybernet. 37(2), 286–298 (2007), Special issue on robot learning by observation, demonstration and imitation

    Article  Google Scholar 

  2. T. Lozano-Perez: Robot programming, Proc. IEEE 71(7), 821–841 (1983)

    Article  Google Scholar 

  3. B. Dufay, J.-C. Latombe: An approach to automatic robot programming based on inductive learning, The Int. J. Robot. Res. 3(4), 3–20 (1984)

    Article  Google Scholar 

  4. A. Levas, M. Selfridge: A user-friendly high-level robot teaching system, Proc. IEEE International Conference on Robotics (1984) pp. 413–416

    Google Scholar 

  5. A.B. Segre, G. DeJong: Explanation-based manipulator learning Acquisition of planning ability through observation, IEEE Conference on Robotics and Automation (ICRA) (1985) pp. 555–560

    Google Scholar 

  6. A.M. Segre: Machine Learning of Robot Assembly Plans (Kluwer Academic Publishers, Boston 1988)

    Google Scholar 

  7. S. Muench, J. Kreuziger, M. Kaiser, R. Dillmann: Robot Programming by Demonstration (RPD) - Using Machine Learning and User Interaction Methods for the Development of Easy and Comfortable Robot Programming Systems, Proc. International Symposium on Industrial Robots (ISIR) (1994) pp. 685–693

    Google Scholar 

  8. Y. Kuniyoshi, Y. Ohmura, K. Terada, A. Nagakubo, S. Eitoku, T. Yamamoto: Embodied basis of invariant features in execution and perception of whole-body dynamic actionsknacks and focuses of Roll-and-Rise motion, Robot. Auton. Syst. 48(4), 189–201 (2004)

    Article  Google Scholar 

  9. Y. Kuniyoshi, M. Inaba, H. Inoue: Teaching by showing: Generating robot programs by visual observation of human performance, Proc. International Symposium of Industrial Robots (1989) pp. 119–126

    Google Scholar 

  10. Y. Kuniyoshi, M. Inaba, H. Inoue: Learning by Watching: Extracting Reusable Task Knowledge from Visual Observation of Human Performance, IEEE Trans. Robot. Autom. 10(6), 799–822 (1994)

    Article  Google Scholar 

  11. S.B. Kang, K. Ikeuchi: A robot system that observes and replicates grasping tasks, Proc. International Conference on Computer Vision (ICCV) (1995) pp. 1093–1099

    Google Scholar 

  12. C.P. Tung, A.C. Kak: Automatic learning of assembly task using a DataGlove system, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (1995) pp. 1–8

    Google Scholar 

  13. K. Ikeuchi, T. Suchiro: Towards an assembly plan from observation, Part I: Assembly task recognition using face-contact relations (polyhedral objects), Proc. IEEE International Conference on Robotics and Automation (ICRA), Vol. 3 (1992) pp. 2171–2177

    Google Scholar 

  14. M. Ito, K. Noda, Y. Hoshino, J. Tani: Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model, Neur. Netw. 19(3), 323–337 (2006)

    Article  MATH  Google Scholar 

  15. T. Inamura, N. Kojo, M. Inaba: Situation Recognition and Behavior Induction Based on Geometric Symbol Representation of Multimodal Sensorimotor Patterns, Proc. IEEE/RSJ international Conference on Intelligent Robots and Systems (IROS) (2006) pp. 5147–5152

    Google Scholar 

  16. S. Liu, H. Asada: Teaching and learning of deburring robots using neural networks, Proc. IEEE International Conference on Robotics and Automation (ICRA) (1993) pp. 339–345

    Google Scholar 

  17. A. Billard, G. Hayes: DRAMA, a connectionist architecture for control and learning in autonomous robots, Adapt. Behav. 7(1), 35–64 (1999)

    Article  Google Scholar 

  18. M. Kaiser, R. Dillmann: Building elementary robot skills from human demonstration, Proc. IEEE International Conference on Robotics and Automation (ICRA) (1996) pp. 2700–2705

    Google Scholar 

  19. R. Dillmann, M. Kaiser, A. Ude: Acquisition of elementary robot skills from human demonstration, Proc. International Symposium on Intelligent Robotic Systems (SIRS) (1995) pp. 1–38

    Google Scholar 

  20. J. Yang, Y. Xu, C.S. Chen: Hidden Markov model approach to skill learning and its application in telerobotics, Proc. IEEE International Conference on Robotics and Automation (ICRA) (1993) pp. 396–402

    Google Scholar 

  21. P.K. Pook, D.H. Ballard: Recognizing teleoperated manipulations, Proceedings of IEEE International Conference on Robotics and Automation (ICRA) (1993) pp. 578–585

    Google Scholar 

  22. G.E. Hovland, P. Sikka, B.J. McCarragher: Skill Acquisition from Human Demonstration Using a Hidden Markov Model, Proc. IEEE International Conference on Robotics and Automation (ICRA) (1996) pp. 2706–2711

    Google Scholar 

  23. S.K. Tso, K.P. Liu: Hidden Markov model for intelligent extraction of robot trajectory command from demonstrated trajectories, Proc. IEEE International Conference on Industrial Technology (ICIT) (1996) pp. 294–298

    Google Scholar 

  24. C. Lee, Y. Xu: Online, Interactive Learning of Gestures for Human/Robot Interfaces, Proc. IEEE international Conference on Robotics and Automation (ICRA) (1996) pp. 2982–2987

    Google Scholar 

  25. G. Rizzolatti, L. Fadiga, L. Fogassi, V. Gallese: Resonance behaviors and mirror neurons, Archives Italiennes de Biologie 137(2-3), 85–100 (1999)

    Google Scholar 

  26. J. Decety, T. Chaminade, J. Grezes, A.N. Meltzoff: A PET Exploration of the Neural Mechanisms Involved in Reciprocal Imitation, Neuroimage 15(1), 265–272 (2002)

    Article  Google Scholar 

  27. J. Piaget: Play, Dreams and Imitation in Childhood (Norton, New York 1962)

    Google Scholar 

  28. J. Nadel, C. Guerini, A. Peze, C. Rivet: The Evolving Nature of Imitation as a Format for Communication. In: Imitation in Infancy (Cambridge University Press, Cambrige 1999) pp. 209–234

    Google Scholar 

  29. M.J. Matarić: Sensory-Motor Primitives as a Basis for Imitation: Linking Perception to Action and Biology to Robotics. In: Imitation in Animals and Artifacts, ed. by C. Nehaniv, K. Dautenhahn (MIT Press, Cambrige 2002)

    Google Scholar 

  30. S. Schaal: Nonparametric regression for learning nonlinear transformations. In: Prerational Intelligence in Strategies, High-Level Processes and Collective Behavior, ed. by H. Ritter, O. Holland (Kluwer Academic, Dortrecht 1999)

    Google Scholar 

  31. A. Billard: Imitation: a means to enhance learning of a synthetic proto-language in an autonomous robot. In: Imitation in Animals and Artifacs, ed. by K. Dautenhahn, C. Nehaniv (MIT Press, Cambrige 2002) pp. 281–311

    Google Scholar 

  32. K. Dautenhahn: Getting to know each other - Artificial social intelligence for autonomous robots, Robot. Auton. Syst. 16(2-4), 333–356 (1995)

    Article  Google Scholar 

  33. C. Nehaniv, K. Dautenhahn: Of Hummingbirds and Helicopters: An Algebraic Framework for Interdisciplinary Studies of Imitation and Its Applications. In: Interdisciplinary Approaches to Robot Learning, ed. by J. Demiris, A. Birk (World Scientific Press, Singapore 2000) pp. 136–161

    Chapter  Google Scholar 

  34. C.L. Nehaniv: Nine Billion Correspondence Problems and Some Methods for Solving Them, Proc. International Symposium on Imitation in Animals and Artifacts (AISB) (2003) pp. 93–95

    Google Scholar 

  35. P. Bakker, Y. Kuniyoshi: Robot See, Robot Do : An Overview of Robot Imitation, Proc. workshop on Learning in Robots and Animals (AISB) (1996) pp. 3–11

    Google Scholar 

  36. M. Ehrenmann, O. Rogalla, R. Zoellner, R. Dillmann: Teaching Service Robots Complex Tasks: Programming by Demonstation for Workshop and Household Environments, Proc. IEEE International Conference on Field and Service Robotics (FRS) (2001)

    Google Scholar 

  37. M. Skubic, R.A. Volz: Acquiring robust, force-based assembly skills from human demonstration, IEEE Trans. Robot. Autom. (2000) pp. 772–781

    Google Scholar 

  38. M. Yeasin, S. Chaudhuri: Toward automatic robot programming: learning human skill from visual data, IEEE Transactions on Systems, Man and Cybernetics, Part B, 30(1), 180–185 (2000)

    Google Scholar 

  39. J. Zhang, B. Rössler: Self-Valuing Learning and Generalization with Application in Visually Guided Grasping of Complex Objects, Robot. Auton. Syst., 47(2-3), 117–127 (2004)

    Article  Google Scholar 

  40. A. Kheddar: Teleoperation based on the hidden robot concept, IEEE Trans. Syst., Man Cybernet., Part A 31(1), 1–13 (2001)

    Google Scholar 

  41. R. Dillmann: Teaching and Learning of Robot Tasks via Observation of Human Performance, Robot. Auton. Syst. 47(2-3), 109–116 (2004)

    Article  Google Scholar 

  42. J. Aleotti, S. Caselli, M. Reggiani: Leveraging on a Virtual Environment for Robot Programming by Demonstration, Robot. Auton. Syst. 47(2-3), 153–161 (2004)

    Article  Google Scholar 

  43. S. Ekvall, D. Kragic: Grasp Recognition for Programming by Demonstration, Proc. IEEE International Conference on Robotics and Automation (ICRA) (2005) pp. 748–753

    Google Scholar 

  44. J. Aleotti, S. Caselli: Trajectory Clustering and Stochastic Approximation for Robot Programming by Demonstration, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2005) pp. 1029–1034

    Google Scholar 

  45. A. Alissandrakis, C.L. Nehaniv, K. Dautenhahn, J. Saunders: Evaluation of Robot Imitation Attempts: Comparison of the Systemʼs and the Humanʼs Perspectives, Proc. ACM SIGCHI/SIGART conference on Human-robot interaction (HRI) (2006) pp. 134–141

    Google Scholar 

  46. N. Delson, H. West: Robot Programming by Human Demonstration: Adaptation and Inconsistency in Constrained Motion, Proc. IEEE International Conference on Robotics and Automation (ICRA) (1996) pp. 30–36

    Google Scholar 

  47. T. Sato, Y. Genda, H. Kubotera, T. Mori, T. Harada: Robot imitation of human motion based on qualitative description from multiple measurement of human and environmental data, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2003) pp. 2377–2384

    Google Scholar 

  48. K. Ogawara, J. Takamatsu, H. Kimura, K. Ikeuchi: Extraction of essential interactions through multiple observations of human demonstrations, IEEE Trans. Indust. Electron. 50(4), 667–675 (2003)

    Article  Google Scholar 

  49. M.N. Nicolescu, M.J. Matarić: Natural Methods for Robot Task Learning: Instructive Demonstrations, Generalization and Practice, Proc. International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2003) pp. 241–248

    Google Scholar 

  50. M. Pardowitz, R. Zoellner, S. Knoop, R. Dillmann: Incremental Learning of Tasks from User Demonstrations, Past Experiences and Vocal Comments., IEEE Trans. Syst., Man Cybernet. 37(2), 322–332 (2007), Special issue on robot learning by observation, demonstration and imitation

    Article  Google Scholar 

  51. B. Jansen, T. Belpaeme: A computational model of intention reading in imitation, Robot. Auton. Syst. 54(5), 394–402 (2006)

    Article  Google Scholar 

  52. S. Ekvall, D. Kragic: Learning Task Models from Multiple Human Demonstrations, Proc. IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (2006) pp. 358–363

    Google Scholar 

  53. H. Friedrich, S. Muench, R. Dillmann, S. Bocionek, M. Sassin: Robot programming by Demonstration (RPD): Supporting the induction by human interaction, Mach. Learn. 23(2), 163–189 (1996)

    Google Scholar 

  54. J. Saunders, C.L. Nehaniv, K. Dautenhahn: Teaching robots by moulding behavior and scaffolding the environment, Proc. ACM SIGCHI/SIGART conference on Human-Robot Interaction (HRI) (2006) pp. 118–125

    Google Scholar 

  55. A. Alissandrakis, C.L. Nehaniv, K. Dautenhahn: Correspondence Mapping Induced State and Action Metrics for Robotic Imitation, IEEE Trans. Syst. Man Cybernet. 37(2), 299–307 (2007), Special issue on robot learning by observation, demonstration and imitation

    Article  Google Scholar 

  56. A. Ude: Trajectory Generation from Noisy Positions of Object Features for Teaching Robot Paths, Robot. Auton. Syst. 11(2), 113–127 (1993)

    Article  Google Scholar 

  57. J. Yang, Y. Xu, C.S. Chen: Human Action Learning via Hidden Markov Model, IEEE Trans. Syst. Man Cybernet. 27(1), 34–44 (1997)

    Article  Google Scholar 

  58. K. Yamane, Y. Nakamura: Dynamics Filter - Concept and implementation of online motion Generator for human figures, IEEE Trans. Robot. Autom. 19(3), 421–432 (2003)

    Article  Google Scholar 

  59. A.J. Ijspeert, J. Nakanishi, S. Schaal: Learning Control Policies For Movement Imitation and Movement recognition, Neural Inform. Process. Syst. (NIPS) 15, 1547–1554 (2003)

    Google Scholar 

  60. S. Vijayakumar, S. Schaal: Locally Weighted Projection Regression: An On Algorithm for Incremental Real Time Learning in High Dimensional Spaces, Proc. International Conference on Machine Learning (ICML) (2000) pp. 288–293

    Google Scholar 

  61. S. Vijayakumar, A. Dʼsouza, S. Schaal: Incremental Online Learning in High Dimensions, Neur. Comput. 17(12), 2602–2634 (2005)

    Article  MathSciNet  Google Scholar 

  62. N. Kambhatla: Local Models and Gaussian Mixture Models for Statistical Data Processing. Ph.D. Thesis (Oregon Graduate Institute of Science and Technology, Portland 1996)

    Google Scholar 

  63. A. Shon, K. Grochow, R. Rao: Robotic Imitation from Human Motion Capture using Gaussian Processes, Proc. IEEE/RAS International Conference on Humanoid Robots (Humanoids) (2005)

    Google Scholar 

  64. K. Grochow, S.L. Martin, A. Hertzmann, Z. Popovic: Style-based inverse kinematics, Proc. ACM International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH) (2004) pp. 522–531

    Google Scholar 

  65. K.F. MacDorman, R. Chalodhorn, M. Asada: Periodic nonlinear principal component neural networks for humanoid motion segmentation, generalization, and generation, Proc. International Conference on Pattern Recognition (ICPR), Vol. 4 (2004) pp. 537–540

    Google Scholar 

  66. S. Calinon, A. Billard: What is the Teacherʼs Role in Robot Programming by Demonstration? - Toward Benchmarks for Improved Learning, Interact. Stud. 8(3), 441–464 (2007), Special Issue on Psychological Benchmarks in Human-Robot Interaction

    Google Scholar 

  67. D. Bullock, S. Grossberg: VITE and FLETE: neural modules for trajectory formation and postural control. In: Volitional control, ed. by W.A. Hersberger (Elsevier, Amsterdam 1989) pp. 253–297

    Chapter  Google Scholar 

  68. F.A. Mussa-Ivaldi: Nonlinear force fields: a distributed system of control primitives for representing and learning movements, IEEE International Symposium on Computational Intelligence in Robotics and Automation (1997) pp. 84–90

    Google Scholar 

  69. P. Li, R. Horowitz: Passive velocity field control of mechanical manipulators, IEEE Trans. Robot. Autom. 15(4), 751–763 (1999)

    Article  Google Scholar 

  70. G. Schoener, C. Santos: Control of movement time and sequential action through attractor dynamics: a simulation study demonstrating object interception and coordination, Proc. International Symposium on Intelligent Robotic Systems (SIRS) (2001)

    Google Scholar 

  71. T. Inamura, H. Tanie, Y. Nakamura: Keyframe Compression and Decompression for Time Series Data based on Continuous Hidden Markov Models, Proc. IEEE/RSJ international Conference on Intelligent Robots and Systems (IROS) (2003) pp. 1487–1492

    Google Scholar 

  72. T. Inamura, I. Toshima, Y. Nakamura: Acquiring Motion Elements for Bidirectional Computation of Motion Recognition and Generation. In: Experimental Robotics VIII, Vol. 5, ed. by B. Siciliano, P. Dario (Springer, Berlin Heidelberg 2003) pp. 372–381

    Chapter  Google Scholar 

  73. T. Inamura, N. Kojo, T. Sonoda, K. Sakamoto, K. Okada, M. Inaba: Intent Imitation using Wearable Motion Capturing System with On-line Teaching of Task Attention, Proc. IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2005) pp. 469–474

    Google Scholar 

  74. D. Lee, Y. Nakamura: Stochastic Model of Imitating a New Observed Motion Based on the Acquired Motion Primitives, Proc. IEEE/RSJ international Conference on Intelligent Robots and Systems (IROS) (2006) pp. 4994–5000

    Google Scholar 

  75. D. Lee, Y. Nakamura: Mimesis Scheme using a Monocular Vision System on a Humanoid Robot, Proc. IEEE International Conference on Robotics and Automation (ICRA) (2007) pp. 2162–2168

    Google Scholar 

  76. S. Calinon, A. Billard: Learning of Gestures by Imitation in a Humanoid Robot. In: Imitation and Social Learning in Robots, Humans and Animals: Behavioural, Social and Communicative Dimensions, ed. by K. Dautenhahn, C.L. Nehaniv (Cambridge Univ. Press, Cambrige 2007) pp. 153–177

    Chapter  Google Scholar 

  77. A. Billard, S. Calinon, F. Guenter: Discriminative and Adaptive Imitation in Uni-Manual and Bi-Manual Tasks, Robot. Auton. Syst. 54(5), 370–384 (2006)

    Article  Google Scholar 

  78. S. Calinon, A. Billard: Recognition and Reproduction of Gestures using a Probabilistic Framework combining PCA, ICA and HMM, Proc. International Conference on Machine Learning (ICML) (2005) pp. 105–112

    Google Scholar 

  79. S. Calinon, F. Guenter, A. Billard: Goal-Directed Imitation in a Humanoid Robot, Proc. IEEE International Conference on Robotics and Automation (ICRA) (2005) pp. 299–304

    Google Scholar 

  80. T. Asfour, F. Gyarfas, P. Azad, R. Dillmann: Imitation Learning of Dual-Arm Manipulation Tasks in Humanoid Robots, Proc. IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2006) pp. 40–47

    Google Scholar 

  81. J. Aleotti, S. Caselli: Robust trajectory learning and approximation for robot programming by demonstration, Robot. Auton. Syst. 54(5), 409–413 (2006)

    Article  Google Scholar 

  82. C.G. Atkeson: Using Local Models to Control Movement, Adv. Neur. Inform. Process. Syst. (NIPS) (1990) pp. 316–323

    Google Scholar 

  83. C.G. Atkeson, A.W. Moore, S. Schaal: Locally Weighted Learning for Control, Artifi. Intell. Rev. 11(1-5), 75–113 (1997)

    Article  Google Scholar 

  84. A.W. Moore: Fast, Robust Adaptive Control by Learning only Forward Models. In: Adv. Neur. Inform. Process. Syst. (NIPS), Vol. 4, ed. by S. Editor (Morgan Kaufmann, San Francisco 1992)

    Google Scholar 

  85. S. Schaal, C.G. Atkeson: From Isolation to Cooperation: An Alternative View of a System of Experts. In: Adv. Neur. Inform. Process. Syst. (NIPS), Vol. 8, ed. by S. Editor (Morgan Kaufmann, San Francisco 1996) pp. 605–611

    Google Scholar 

  86. S. Schaal, C.G. Atkeson: Constructive Incremental Learning from Only Local Information, Neur. Comput. 10(8), 2047–2084 (1998)

    Article  Google Scholar 

  87. M. Hersch, F. Guenter, S. Calinon, A.G. Billard: Learning Dynamical System Modulation for Constrained Reaching Tasks, Proc. IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2006) pp. 444–449

    Google Scholar 

  88. A.J. Ijspeert, J. Nakanishi, S. Schaal: Movement imitation with nonlinear dynamical systems in humanoid robots, Proc. IEEE International Conference on Robotics and Automation (ICRA) (2002) pp. 1398–1403

    Google Scholar 

  89. C. Breazeal, M. Berlin, A. Brooks, J. Gray, A.L. Thomaz: Using perspective taking to learn from ambiguous demonstrations, Robot. Auton. Syst. 54(5), 385–393 (2006)

    Article  Google Scholar 

  90. Y. Sato, K. Bernardin, H. Kimura, K. Ikeuchi: Task analysis based on observing hands and objects by vision, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2002) pp. 1208–1213

    Google Scholar 

  91. R. Zoellner, M. Pardowitz, S. Knoop, R. Dillmann: Towards Cognitive Robots: Building Hierarchical Task Representations of Manipulations from Human Demonstration, Proc. IEEE International Conference on Robotics and Automation (ICRA) (2005) pp. 1535–1540

    Google Scholar 

  92. M. Pardowitz, R. Zoellner, R. Dillmann: Incremental learning of task sequences with information-theoretic metrics, Proc. European Robotics Symposium (EUROS) (2005)

    Google Scholar 

  93. M. Pardowitz, R. Zoellner, R. Dillmann: Learning sequential constraints of tasks from user demonstrations, Proc. IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2005) pp. 424–429

    Google Scholar 

  94. S. Calinon, A. Billard: Teaching a Humanoid Robot to Recognize and Reproduce Social Cues, Proc. IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN) (2006) pp. 346–351

    Google Scholar 

  95. B. Scassellati: Imitation and Mechanisms of Joint Attention: A Developmental Structure for Building Social Skills on a Humanoid Robot, Lect. Notes Comput. Sci. 1562, 176–195 (1999)

    Article  Google Scholar 

  96. H. Kozima, H. Yano: A robot that learns to communicate with human caregivers, Proc. International Workshop on Epigenetic Robotics (2001)

    Google Scholar 

  97. H. Ishiguro, T. Ono, M. Imai, T. Kanda: Development of an Interactive Humanoid Robot Robovie - An interdisciplinary approach, Robot. Res. 6, 179–191 (2003)

    Article  Google Scholar 

  98. K. Nickel, R. Stiefelhagen: Pointing gesture recognition based on 3 D-tracking of face, hands and head orientation, Proc. international conference on Multimodal interfaces (ICMI) (2003) pp. 140–146

    Google Scholar 

  99. M. Ito, J. Tani: Joint attention between a humanoid robot and users in imitation game, Proc. International Conference on Development and Learning (ICDL) (2004)

    Google Scholar 

  100. V.V. Hafner, F. Kaplan: Learning to interpret pointing gestures: experiments with four-legged autonomous robots. In: Biomimetic Neural Learning for Intelligent Robots. Intelligent Systems, Cognitive Robotics, and Neuroscience, ed. by S. Wermter, G. Palm, M. Elshaw (Springer, Berlin, Heidelberg 2005) pp. 225–234

    Chapter  Google Scholar 

  101. C. Breazeal, D. Buchsbaum, J. Gray, D. Gatenby, B. Blumberg: Learning from and about Others: Towards Using Imitation to Bootstrap the Social Understanding of Others by Robots, Artificial Life 11(1-2), 31–62 (2005)

    Article  Google Scholar 

  102. P.F. Dominey, M. Alvarez, B. Gao, M. Jeambrun, A. Cheylus, A. Weitzenfeld, A. Martinez, A. Medrano: Robot command, interrogation and teaching via social interaction, Proc. IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2005) pp. 475–480

    Google Scholar 

  103. A.L. Thomaz, M. Berlin, C. Breazeal: Robot Science Meets Social Science: An Embodied Computational Model of Social Referencing, Workshop Toward Social Mechanisms of Android Science (CogSci) (2005) pp. 7–17

    Google Scholar 

  104. C. Breazeal, L. Aryananda: Recognition of Affective Communicative Intent in Robot-Directed Speech, Autonomous Robots 12(1), 83–104 (2002)

    Article  MATH  Google Scholar 

  105. H. Bekkering, A. Wohlschlaeger, M. Gattis: Imitation of gestures in children is goal-directed, Quart. J. Exp. Psychol. 53A(1), 153–164 (2000)

    Google Scholar 

  106. M. Nicolescu, M.J. Matarić: Task Learning Through Imitation and Human-Robot Interaction. In: Imitation and Social Learning in Robots, Humans and Animals: Behavioural, Social and Communicative Dimensions, ed. by K. Dautenhahn, C.L. Nehaniv (Cambridge Univ. Press, Cambrige 2007) pp. 407–424

    Chapter  Google Scholar 

  107. J. Demiris, G. Hayes: Imitative Learning Mechanisms in Robots and Humans, Proc. European Workshop on Learning Robots, ed. by V. Klingspor (1996) pp. 9–16

    Google Scholar 

  108. P. Gaussier, S. Moga, J.P. Banquet, M. Quoy: From perception-action loop to imitation processes: a bottom-up approach of learning by imitation, Appl. Artif. Intell. 7(1), 701–729 (1998)

    Article  Google Scholar 

  109. M. Ogino, H. Toichi, Y. Yoshikawa, M. Asada: Interaction rule learning with a human partner based on an imitation faculty with a simple visuo-motor mapping, Robot. Auton. Syst. 54(5), 414–418 (2006)

    Article  Google Scholar 

  110. A. Billard, M. Matarić: Learning human arm movements by imitation: Evaluation of a biologically-inspired connectionist architecture, Robot. Auton. Syst. 37(2), 145–160 (2001)

    Article  MATH  Google Scholar 

  111. W. Erlhagen, A. Mukovskiy, E. Bicho, G. Panin, C. Kiss, A. Knoll, H. van Schie, H. Bekkering: Goal-directed imitation for robots: A bio-inspired approach to action understanding and skill learning, Robot. Auton. Syst. 54(5), 353–360 (2006)

    Article  Google Scholar 

  112. A. Chella, H. Dindo, I. Infantino: A cognitive framework for imitation learning, Robot. Auton. Syst. 54(5), 403–408 (2006)

    Article  Google Scholar 

  113. S. Calinon, A. Billard: Incremental Learning of Gestures by Imitation in a Humanoid Robot, Proc. ACM/IEEE International Conference on Human-Robot Interaction (HRI) (2007) pp. 255–262

    Google Scholar 

  114. F. Guenter, M. Hersch, S. Calinon, A. Billard: Reinforcement Learning for Imitating Constrained Reaching Movements, Adv. Robot. 21(13), 1521–1544 (2007), Special Issue on Imitative Robots

    Google Scholar 

  115. R.H. Cuijpers, H.T. van Schie, M. Koppen, W. Erlhagen, H. Bekkering: Goals and means in action observation: A computational approach, Neural Networks 19(3), 311–322 (2006)

    Article  MATH  Google Scholar 

  116. M.W. Hoffman, D.B. Grimes, A.P. Shon, R.P.N. Rao: A probabilistic model of gaze imitation and shared attention, Neural Networks 19(3), 299–310 (2006)

    Article  MATH  Google Scholar 

  117. Y. Demiris, B. Khadhouri: Hierarchical attentive multiple models for execution and recognition of actions, Robot. Auton. Syst. 54(5), 361–369 (2006)

    Article  Google Scholar 

  118. J. Peters, S. Vijayakumar, S. Schaal: Reinforcement Learning for Humanoid Robotics, Proc. IEEE International Conference on Humanoid Robots (Humanoids) (2003)

    Google Scholar 

  119. T. Yoshikai, N. Otake, I. Mizuuchi, M. Inaba, H. Inoue: Development of an Imitation Behavior in Humanoid Kenta with Reinforcement Learning Algorithm based on the Attention during Imitation, Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2004) pp. 1192–1197

    Google Scholar 

  120. D.C. Bentivegna, C.G. Atkeson, G. Cheng: Learning Tasks from Observation and Practice, Robot. Auton. Syst. 47(2-3), 163–169 (2004)

    Article  Google Scholar 

  121. Y.K. Hwang, K.J. Choi, D.S. Hong: Self-Learning Control of Cooperative Motion for a Humanoid Robot, Proc. IEEE International Conference on Robotics and Automation (ICRA) (2006) pp. 475–480

    Google Scholar 

  122. A. Billard, K. Dautenhahn: Grounding communication in autonomous robots: an experimental study, Robot. Auton. Syst. 24(1-2), 71–79 (1998), Special Issue on Scientific methods in mobile robotics

    Article  Google Scholar 

  123. S. Schaal: Is Imitation Learning the Route to Humanoid Robots?, Trends Cognit. Sci. 3(6), 233–242 (1999)

    Article  Google Scholar 

  124. J.H. Maunsell, D.C. Van Essen: Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity, Neurophysiol. 49(5), 1148–1167 (1983)

    Google Scholar 

  125. M. Arbib, T. Iberall, D. Lyons: Coordinated Control Program for Movements of the Hand, Exp. Brain Res. Suppl. 10, 111–129 (1985)

    Google Scholar 

  126. D. Sternad, S. Schaal: Segmentation of endpoint trajectories does not imply segmented control, Exp. Brain Res. 124(1), 118–136 (1999)

    Article  Google Scholar 

  127. R.S. Sutton, S. Singh, D. Precup, B. Ravindran: Improved switching among temporally abstract actions, Advances in Neural Information Processing Systems (NIPS) 11, 1066–1072 (1999)

    Google Scholar 

  128. Y. Demiris, G. Hayes: Imitation as a Dual Route Process Featuring Predictive and Learning Components: a Biologically-Plausible Computational Model. In: Imitation in Animals and Artifacs, ed. by K. Dautenhahn, C. Nehaniv (MIT Press, Cambrige 2002) pp. 327–361

    Google Scholar 

  129. D.M. Wolpert, M. Kawato: Multiple paired forward and inverse models for motor control, Neural Networks 11(7-8), 1317–1329 (1998)

    Article  Google Scholar 

  130. C. Nehaniv, K. Dautenhahn: Imitation in Animals and Artifacs (MIT Press, Boston 2002)

    Google Scholar 

  131. R.S. Sutton, A.G. Barto: Reinforcement learning: an introduction. In: Adaptive computation and machine learning, ed. by S. Editor (MIT Press, Cambridge 1998)

    Google Scholar 

  132. G. Rizzolatti, L. Fogassi, V. Gallese: Neurophysiological mechanisms underlying the understanding and imitation of action, Nature Rev. Neurosci. 2, 661–670 (2001)

    Article  Google Scholar 

  133. M. Iacoboni, R.P. Woods, M. Brass, H. Bekkering, J.C. Mazziotta, G. Rizzolatti: Cortical Mechanisms of Human Imitation, Science 286, 2526–2528 (1999)

    Article  Google Scholar 

  134. E. Oztop, M. Kawato, M.A. Arbib: Mirror neurons and imitation: A computationally guided review, Neural Networks 19(3), 254–321 (2006)

    Article  MATH  Google Scholar 

  135. E. Sauser, A. Billard: Biologically Inspired Multimodal Integration: Interferences in a Human-Robot Interaction Game, Proc. IEEE/RSJ international Conference on Intelligent Robots and Systems (IROS) (2006) pp. 5619–5624

    Google Scholar 

  136. A.H. Fagg, M.A. Arbib: Modeling Parietal-Premotor Interactions in Primate Control of Grasping, Neural Networks 11(7), 1277–1303 (1998)

    Article  Google Scholar 

  137. E. Oztop, M.A. Arbib: Schema Design and Implementation of the Grasp-Related Mirror Neuron System, Biol. Cybernet. 87(2), 116–140 (2002)

    Article  MATH  Google Scholar 

  138. M. Arbib, A. Billard, M. Iacoboni, E. Oztop: Mirror neurons, Imitation and (Synthetic) Brain Imaging, Neural Networks 13(8-9), 953–973 (2000)

    Article  Google Scholar 

  139. E. Oztop, M. Lin, M. Kawato, G. Cheng: Dexterous Skills Transfer by Extending Human Body Schema to a Robotic Hand, Proc. IEEE-RAS International Conference on Humanoid Robots (Humanoids) (2006) pp. 82–87

    Google Scholar 

  140. E. Sauser, A. Billard: Parallel and Distributed Neural Models of the Ideomotor Principle: An Investigation of Imitative Cortical Pathways, Neural Networks 19(3), 285–298 (2006)

    Article  MATH  Google Scholar 

  141. E.L. Sauser, A.G. Billard: Dynamic Updating of Distributed Neural Representations using Forward Models, Biol. Cybernet. 95(6), 567–588 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  142. M. Brass, H. Bekkering, A. Wohlschlaeger, W. Prinz: Compatibility between observed and executed movements: Comparing symbolic, spatial and imitative cues, Brain Cognit. 44(2), 124–143 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aude Billard Prof , Sylvain Calinon MS , Rüdiger Dillmann Prof or Stefan Schaal Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Billard, A., Calinon, S., Dillmann, R., Schaal, S. (2008). Robot Programming by Demonstration. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics