Skip to main content

Industrial Robotics

  • Reference work entry
Book cover Springer Handbook of Robotics

Abstract

Most robots today can trace their origin to early industrial robot designs. Much of the technology that makes robots more human-friendly and adaptable for different applications has emerged from manufacturers of industrial robots. Industrial robots are by far the largest commercial application of robotics technology today. All the important foundations for robot control were initially developed with industrial applications in mind. These applications deserve special attention in order to understand the origin of robotics science and to appreciate many unsolved problems that still prevent the wider use of robots in manufacturing. In this chapter we present a brief history and descriptions of typical industrial robotics applications. We show how robots with different mechanisms fit different applications. Even though robots are well established in large-scale manufacturing, particularly in automobile and related component assembly, there are still many challenging problems to solve. The range of feasible applications could significantly increase if robots were easier to install, to integrate with other manufacturing processes, and to program, particularly with adaptive sensing and automatic error recovery. We outline some of these remaining challenges for researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGV:

automated guided vehicles

AR:

augmented reality

CAD:

computer-aided design

CCD:

charge-coupled devices

CNC:

computer numerical control

DLR:

Deutsches Zentrum für Luft- und Raumfahrt

DOF:

degree of freedom

FMS:

flexible manufacturing systems

I/O:

input/output

ISO:

International Organization for Standardization

IT:

inferotemporal

IT:

intrinsic tactile

MIG:

metal inert gas

MTBF:

mean time between failure

OLP:

offline programming

PC:

Purkinje cells

PC:

principal contact

PKM:

parallel kinematic machine

PLC:

programmable logic controller

PTP:

point-to-point

RSS:

realistic robot simulation

SAIL:

Stanford Artificial Intelligence Laboratory

SCARA:

selective compliance assembly robot arm

SKM:

serial kinematic machines

VCR:

videocassette recorder

References

  1. The International Federation of Robotics (IFR): World Robotics 2007. Statistics, Market Analysis, Forecasts, Case Studies and Profitability of Robot Investment (IFR Statistical Department, Frankfurt 2007), http://www.ifrstat.org

    Google Scholar 

  2. M.P. Groover: Automation, Production Systems, and Computer-Integrated Manufacturing, 2nd edn. (Prentice Hall, Upper Saddle River 2000)

    Google Scholar 

  3. B.S. Dhillon, A.R.M. Fashandi, K.L. Liu: Robot systems reliability and safety: a review, J. Qual. Mainten. Eng. 8(3), 170–212 (2002)

    Article  Google Scholar 

  4. R.D. Schraft, S. Schmid, S. Thiemermann: Man–robot cooperation in a flexible assembly cell, Assemb. Autom. 22(2), 136–138 (2002)

    Article  Google Scholar 

  5. S.Y. Nof: Handbook of Industrial Robotics (Wiley, New York 1985)

    Google Scholar 

  6. V.D. Scheinman: Design of a Computer Controlled Manipulator. Ph.D. Thesis (Stanford University, Department of Computer Science 1969)

    Google Scholar 

  7. L. Westerlund: The Extended Arm of Man. A History of the Industrial Robot (Informations Förlaget, Stockholm 2000)

    Google Scholar 

  8. H. Makino: Assembly Robot, Patent 4341502 (1980)

    Google Scholar 

  9. G. Boothroyd, L. Altling: Design for assembly and disassembly, Int. Inst. Prod. Eng. Res. Annal. (CIRP Annals) 41(2), 625–636 (1992)

    Google Scholar 

  10. G. Hirzinger, N. Sporer, A. Albu-Schaffer, M. Hahnle, R. Krenn, A. Pascucci, M. Schedl: DLRʼs torque-controlled light weight robot III – are we reaching the technological limits now?, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Vol. 2 (Washington 2002) pp. 1710–1716

    Google Scholar 

  11. R. Clavel: Device for the movement and positioning of an element in space, Patent 4976582 (1989)

    Google Scholar 

  12. R. Bloss: Innovation at IMTS, Ind. Robot 30(2), 159–161 (2003)

    Article  MathSciNet  Google Scholar 

  13. Y. Kusuda: The international robot exhibition 2005 in Tokyo, Ind. Robot 33(5), 342–348 (2006)

    Article  Google Scholar 

  14. Y.R. Siegwart, I.R. Nourbakhsh: Introduction to Autonomous Mobile Robots (MIT Press, Cambridge 2004)

    Google Scholar 

  15. R. D. Schraft, M. Hägele, A. Breckweg: Man and robotwithout separating systems. Managers Navigator. World of Automation and Metalworking: 8th Edition for Europe (VDMA-Verlag, Frankfurt am Main 2006) pp.4–5

    Google Scholar 

  16. R. Bernhard, G. Schreck, C. Willnow: Development of virtual robot controllers and future trends, 6th IFAC Symp. Cost oriented Automation (Fraunhofer IPK, Berlin 2001)

    Google Scholar 

  17. K. Ikeuchi, B.K.P. Horn, S. Nagata: Picking up an object from a pile of objects, A.I. Memo 726, Artificial Intelligence Laboratory, Massachusetts Institute of Technology (1983)

    Google Scholar 

  18. J. Kirkegaard, T.B. Moeslund: Bin-picking based on harmonic shape contexts and graph-based matching, Proc. 18th Int. Conf. Pattern Recogn. (ICPRʼ06) (Hong Kong 2006) pp. 581–584

    Google Scholar 

  19. K. Modrich: 3D machine vision solution for bin picking applications, Proc. Int. Robot. Vision Show (Rosemont 2007)

    Google Scholar 

  20. T. Schaefer, R.D. Schraft: Incremental sheet metal forming by industrial robots, Rapid Prototyp. J. 11(5), 278–286 (2005)

    Article  Google Scholar 

  21. International Organization for Standardization (ISO): Robots for Industrial Environments – Safety Requirements (ISO, Geneva 2007), ISO 10218-1:2006/Cor 1:2007

    Google Scholar 

  22. International Organization for Standardization (ISO): Safety of Machinery – Safety-Related Parts of Control Systems – Part 1: General Principles for Design (ISO, Geneva 2006), ISO 13849-1:2006

    Google Scholar 

  23. International Organization for Standardization (ISO): Safety of Machinery – Safety-Related Parts of Control Systems – Part 2: Validation (ISO, Geneva 2003), ISO 13849-2:2003

    Google Scholar 

  24. A. Albu-Schäffer, C. Ott, G. Hirzinger: A unified passivity based control framework for position, torque and impedance control of flexible joint robots, Int. J. Robot. Res. 26, 23–39 (2007)

    Article  Google Scholar 

  25. A. Kochan: Robots and operators work hand in hand, Ind. Robot 33(6), 422–424 (2006)

    Article  Google Scholar 

  26. Three-dimensional control and monitoring – The first safe camera system SafetyEYE opens up new horizons for safety and security, Press release Pilz GmbH and Co. KG, Ostfildern, Germany, (2006) http://www.pilz.de

    Google Scholar 

  27. B. Siciliano, L. Villani: Robot Force Control, Ser. Eng. Comput. Sci. (Springer, Berlin, Heidelberg 2000)

    Google Scholar 

  28. J.J. Craig: Introduction to Robotics: Mechanics and Control (Prentice Hall, Upper Saddle River 2003)

    Google Scholar 

  29. U. Thomas, F.M. Wahl, J. Maass, J. Hesselbach: Towards a new concept of robot programming in high speed assembly applications, Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS 2005) (2005) pp. 3827–3833

    Google Scholar 

  30. J.N. Pires, A. Loureiro, G. Bolmsjö: Welding Robots (Springer, London 2006)

    Google Scholar 

  31. A. Blomdell, G. Bölmsjo, T. Brogardh, P. Cederberg, M. Isaksson, R. Johansson, M. Haage, K. Nilsson, M. Olsson, T.A. Robertsson, J. Wang: Extending an industrial robot controller: implementation and applications of a fast open sensor interface, IEEE Robot. Autom. Mag. 12(3), 85–94 (2005)

    Article  Google Scholar 

  32. Autodesk: Inventor Application Programming Interface. Manual (Autodesk Inc, 2007)

    Google Scholar 

  33. W. Townsend: The BarrettHand grasper – programmable flexible part handling and assembly, Ind. Robot 27(3), 181–188 (2000)

    Article  MathSciNet  Google Scholar 

  34. A. Wolf, R. Steinmann, H. Schunk: Grippers in Motion (Springer, New York, 2005)

    Google Scholar 

  35. J.N. Pires: Industrial Robot Programming, Building Applications for the Factories of the Future (Springer, New York 2007)

    Google Scholar 

  36. R. Zurawski: Integration Technologies for Industrial Automated Systems (CRC, Boca Raton 2006)

    Book  Google Scholar 

  37. M. Hobday, A. Davies, A. Prencipe: Systems integration: a core capability of the modern corporation, Ind. Corp. Change 14(6), 1109–1143 (2005)

    Article  Google Scholar 

  38. G. Wöhlke, E. Schiller: Digital planning validation in automotive industry, Comput. Ind. 56(4), 393–405 (2005)

    Article  Google Scholar 

  39. E. Westkämper: Strategic development of factories under the influence of emergent technologies, CIRP Ann. Manuf. Technol. 56(1), 419–422 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin Hägele , Klas Nilsson Dr. or J. Norberto Pires Prof .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag

About this entry

Cite this entry

Hägele, M., Nilsson, K., Pires, J.N. (2008). Industrial Robotics. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30301-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30301-5_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23957-4

  • Online ISBN: 978-3-540-30301-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics