Skip to main content

Nanoscopic Architecture and Microstructure

  • Reference work entry
Springer Handbook of Materials Measurement Methods

Part of the book series: Springer Handbooks ((SHB))

  • 13k Accesses

Abstract

The methods compiled in this chapter are important in many areas of materials science and technology because various physical properties of materials (mechanical, thermal, electronic, optical, magnetic, dielectric, biological) depend on their geometric architecture, on scales ranging from the atomic or nanoscopic to the semimicroscopic. Some of the properties are governed only by an elementary atomic group in the structural hierarchy while others are brought about by cooperative functioning of multiple phases or microscopic structures in different dimensions. Corresponding to the vast variety of materials and their properties, a wide range of experimental techniques are available, so that the choice of which technique to employ on starting a study may not be clear. In this respect one should also bear in mind that some of the techniques presented in this chapter are based on physical principles, which are also relevant to the measurement methods compiled in Chapts. 4 and 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

AES:

Auger electron spectroscopy

AFM:

atomic force microscopy

CE:

capillary electrophoresis

CE:

counter electrode

CL:

cathodoluminescence

CT:

compact tension

DLTS:

deep level transient spectroscopy

EBIC:

electron beam induced currents

EELS:

electron energy-loss spectroscopy

EPMA:

electron probe microanalysis

FID:

flame ionization detector

FID:

free-induction decay

FT:

Fourier transform

GC:

gas chromatography

IR:

infrared region

LC:

liquid chromatography

NMR:

nuclear magnetic resonance

PAC:

perturbed angular correlations

PCR:

polymerase chain reaction

PEELS:

parallel electron energy loss spectroscopy

PL:

photoluminescence

RF:

radiofrequency

SEM:

scanning electron microscope

SNOM:

scanning near-field optical microscopy

STEM:

scanning transmission electron microscope

STM:

scanning tunneling microscopes

TEM:

transmission electron microscope

TOF:

time-of-flight

XPS:

X-ray photoelectron spectroscopy

bcc:

body-centered cubic

fcc:

face-centered cubic

References

  1. A. Briggs, W. Arnold: Advances in Acoustic Microscopy (Plenum, New York 1995)

    Google Scholar 

  2. K. Sakai, T. Ogawa: Fourier-transformed light scattering tomography for determination of scatterer shapes, Meas. Sci. Technol. 8, 1090 (1997)

    Article  CAS  Google Scholar 

  3. S. V. Gupta: Practical Density Measurement and Hydrometry (IOP, Bristol 2002)

    Book  Google Scholar 

  4. Z. Alfassi: Activation Analysis, Vol. I & II (CRC, Boca Raton 1990)

    Google Scholar 

  5. A. Tonomura: Electron Holography (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  6. J. Shah: Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  7. T. Wimbauer, K. Ito, Y. Mochizuki, M. Horikawa, T. Kitano, M. S. Brandt, M. Stutzmann: Defects in planar Si pn junctions studied with electrically detected magnetic resonance, Appl. Phys. Lett. 76, 2280 (2000)

    Article  CAS  Google Scholar 

  8. L. V. Azároff: Elements of X-ray Crystallography (McGraw–Hill, New York 1968)

    Google Scholar 

  9. J. M. Cowley: Diffraction Physics (North-Holland, Amsterdam 1975)

    Google Scholar 

  10. B. D. Cullity: Elements of X-ray Diffraction (Addison–Wesley, Reading 1977)

    Google Scholar 

  11. A. Guinier: X-ray Diffraction in Crystals and Imperfect Crystals, Amorphous Bodies (Dover, New York 1994)

    Google Scholar 

  12. G. Rhodes: Crystallography Made Crystal Clear (Academic, San Diego 2000)

    Google Scholar 

  13. S. Bradbury: An Introduction to the Optical Microscope (Oxford Sci. Publ., Oxford 1989)

    Google Scholar 

  14. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, M. J. Whelan: Electron Microscopy of Thin Crystals (Butterworths, London 1965)

    Google Scholar 

  15. D. B. Williams, C. B. Carter: Transmission Electron Microscopy (Plenum, New York 1996)

    Google Scholar 

  16. M. J. Whelan: Modern Diffraction and Imaging Techniques in Materials Science, ed. by S. Amelinckx, R. Gevers, G. Remaut, J. Van Landuyt (North-Holland, Amsterdam 1970) p. 35

    Google Scholar 

  17. C. E. Lyman, D. E. Newbury, J. I. Goldstein, D. B. Williams, A. D. Romig, Jr., J. T. Armstrong, P. Echlin, C. E. Fiori, D. C. Joy, E. Lifshin, K. Peters: Scanning Electron Microscopy, X-ray Microanalysis and Analytical Electron Microscopy (Plenum, New York 1990)

    Google Scholar 

  18. D. Bonnell (Ed.): Scanning Probe Microscopy and Spectroscopy (Wiley, Weinheim 2001)

    Google Scholar 

  19. B. Bhushan, H. Huchs, S. Hosaka (Eds.): Applied Scanning Probe Methods (Springer, Berlin, Heidelberg 2004)

    Google Scholar 

  20. K. S. Birdi: Scanning Probe Microscopes (CRC, Boca Raton 2003)

    Book  Google Scholar 

  21. V. J. Morris, A. R. Kirby, A. P. Gunning: Atomic Force Microscopy for Biologists (Imperial College Press, London 1999)

    Google Scholar 

  22. S. Morita, R. Wiesendanger, E. Meyer: Noncontact Atomic Force Microscopy (Springer, Berlin, Heidelberg 2002)

    Google Scholar 

  23. M. Ohtsu: Near-Field Nano-Atom Optics and Technology (Plenum, New York 1999)

    Google Scholar 

  24. M. K. Miller, G. D. W. Smith: Atom Probe Microanalysis (Materials Research Society, Pittsburgh 1989)

    Google Scholar 

  25. S. Morita, N. Oyabu: Atom selective imaging and mechanical atom manipulation based on noncontact atomic force microscope method, e-J.Surf. Sci. Technology 1, 158 (2003)

    Article  Google Scholar 

  26. D. Attwood: Soft X-rays and Extreme Ultraviolet Radiation (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  27. H. Kusmany: Solid State Spectroscopy (Springer, Berlin, Heidelberg 1998) p. 210

    Google Scholar 

  28. M. Fleischman, P. J. Hendra, A. J. McQuillan: Raman-spectra of pyridine adsorbed at a silver electrode, Chem. Phys. Lett. 26, 163 (1974)

    Article  Google Scholar 

  29. D. L. Feldheim, C. A. Foss, Jr.: Metal Nanoparticles (Marcel Dekker, New York 2002)

    Google Scholar 

  30. G. Bricogne: Maximum-entropy and the foundations of direct methods, Acta Cryst. A 40, 410 (1984)

    Article  Google Scholar 

  31. R. Kitaura, S. Kitagawa, Y. Kubota, T. C. Kobayashi: Formation of a one-dimensional array of oxygen in a microporous metal-organic solid, Science 298, 2358 (2002)

    Article  CAS  Google Scholar 

  32. R. B. Von Dreele: Combined Rietveld and stereochemical restraint refinement of a protein crystal structure, J. Appl. Cryst. 32, 1084 (1999)

    Article  Google Scholar 

  33. M. Ito, H. Narumi, T. Mizoguchi, T. Kawamura, H. Iwasaki, and, N. Shiotani: Structural change of amorphous Mg70Zn30 alloy under isothermal annealing, J. Phys. Soc. Jpn. 54, 1843 (1985)

    Article  CAS  Google Scholar 

  34. S. R. P. Silva: Properties of Amorphous Carbon (INSPEC, London 2003)

    Google Scholar 

  35. P. Ehrhart, H. G. Haubold, W. Schilling: Festkörperprobleme XIV/ Advances in Solid State Physics, ed. by J. Queisser H. (Vieweg, Braunschweig 1974) p. 87

    Google Scholar 

  36. P. Ehrhart, H. G. Haubold, W. Schilling: Investigation of Point Defects and Their Agglomerates in Irradiated Metals by Diffuse X-ray Scattering. In: Festkörperprobleme XIV/Advances in Solid State Phys., ed. by H. J. Queisser (Vieweg, Braunschweig 1974)

    Google Scholar 

  37. A. Hida, Y. Mera, K. Maeda: Identification of arsenic antisite defects with EL2 by nanospectroscopic studies of individual centers, Physica B 308–310, 738 (2001)

    Article  Google Scholar 

  38. P. M. Voyles, D. A. Muller, J. L. Grazul, P. H. Citrin, H.-J. L. Gossmann: Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si, Nature 416, 826 (2002)

    Article  CAS  Google Scholar 

  39. D. A. Muller, N. Nakagawa, A. Ohtomo, J. Grazul, H. Y. Hwang: Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature 430, 657 (2004)

    Article  CAS  Google Scholar 

  40. F. Lüty: Physics of Color Centers, ed. by W. B. Fowler (Academic Press, New York 1968) p. 181

    Google Scholar 

  41. A. van der Ziel: Noise in Solid State Devices and Circuits (Wiley, New York 1986)

    Google Scholar 

  42. N. B. Lukyanchikova: Noise Research in Semiconductor Physics (Gordon Breach, Amsterdam 1996)

    Google Scholar 

  43. N. Fukata, T. Ohori, M. Suezawa, H. Takahashi: Hydrogen-defect complexes formed by neutron irradiation of hydrogenated silicon observed by optical absorption measurement, J. Appl. Phys. 91, 5831 (2002)

    Article  CAS  Google Scholar 

  44. A. Hida: unpublished

    Google Scholar 

  45. J. P. Buisson, S. Lefrant, A. Sadoc, L. Taureland M. Billardon: Raman-scattering by KI containing F-centers, Phys. Stat. Sol. B 78, 779 (1976)

    Article  CAS  Google Scholar 

  46. T. Sekiguchi, Y. Sakuma, Y. Awano, N. Yokoyama: Cathodoluminescence study of InGaAs/GaAs quantum dot structures formed on the tetrahedral-shaped recesses on GaAs (111)B substrates, J. Appl. Phys. 83, 4944 (1998)

    Article  CAS  Google Scholar 

  47. G. D. Watkins: Radiation Damage in Semiconductors (Dunod, Paris 1964) p. 97

    Google Scholar 

  48. B. Henderson: Defects in Crystalline Solids (E Arnold, London 1972)

    Google Scholar 

  49. L. F. Mollenauer, S. Pan: Dynamics of the optical-pumping cycle of F centers in alkali halides-theory and application to detection of electron-spin and electron-nuclear-double-spin resonance in the relaxed-excited state, Phys. Rev. B 6, 772 (1972)

    Article  CAS  Google Scholar 

  50. S. E. Barrett, R. Tycko, L. N. Pfeiffer, K. W. West: Directly detected Nuclear-Magnetic-Resonance of optically pumped GaAs quantum-wells, Phys. Rev. Lett. 72, 1368 (1994)

    Article  CAS  Google Scholar 

  51. K. Morigaki: Spin-dependent radiative and nonradiative recombinations in hydrogenated amorphous silicon: Optically detected magnetic resonance, J. Phys. Soc. Jpn. 50, 2279 (1981)

    Article  CAS  Google Scholar 

  52. A. Möslang, H. Graf, G. Balzer, E. Recknagel, A. Weidinger, T. Wichert, R. I. Grynszpan: Muon trapping at monovacancies in iron, Phys. Rev. B 27, 2674 (1983)

    Article  Google Scholar 

  53. C. P. Slichter, D. Ailion: Low-field relaxation and the study of ultraslow atomic motions by magnetic resonance, Phys. Rev. 135, A1099 (1964)

    Article  Google Scholar 

  54. P. Hautojärvi: Positrons in Solids (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  55. R. Krause-Rehberg, H. S. Leipner: Positron Annihilation in Semiconductors (Springer, Berlin, Heidelberg 1999)

    Google Scholar 

  56. M. J. Puska, C. Corbel: Positron states in Si and GaAs, Phys. Rev. B 38, 9874 (1988)

    Article  CAS  Google Scholar 

  57. M. Hakala, M. J. Puska, R. M. Nieminen: Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si, Phys. Rev. B 57, 7621 (1998)

    Article  CAS  Google Scholar 

  58. M. Hasegawa: private communication

    Google Scholar 

  59. M. Saito, A. Oshiyama: Lifetimes of positrons trapped at Si vacancies, Phys. Rev. B 53, 7810 (1996)

    Article  CAS  Google Scholar 

  60. Z. Tang, M. Saito, M. Hasegawa: unpublished

    Google Scholar 

  61. H. Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara, M. Kiritani: Positron annihilation study of vacancy-type defects in high-speed deformed Ni, Cu and Fe, Mater. Sci. Eng. A 350, 95 (2003)

    Article  Google Scholar 

  62. W. Triftshäuser, J. D. McGervey: Monovacancy formation energy in copper, silver, and gold by positron-annihilation, Appl. Phys. 6, 177 (1975)

    Article  Google Scholar 

  63. R. O. Simmons, R. W. Balluffi: Measurements of equilibrium vacancy concentrations in aluminum, Phys. Rev. 117, 52 (1960)

    Article  CAS  Google Scholar 

  64. M. Hasegawa, Z. Tang, Y. Nagai, T. Nonaka, K. Nakamura: Positron lifetime and coincidence Doppler broadening study of vacancy-oxygen complexes in Si: experiments and first-principles calculations, Appl. Surf. Sci. 194, 76 (2002)

    Article  CAS  Google Scholar 

  65. S. Mantl, W. Triftshäuser: Defect annealing studies on metals by positron-annihilation and electrical-resistivity measurement, Phys. Rev. B 17, 1645 (1978)

    Article  CAS  Google Scholar 

  66. M. Hasegawa, Z. Tang, Y. Nagai, T. Chiba, E. Kuramoto, M. Takenaka: Irradiation-induced vacancy and Cu aggregations in Fe-Cu model alloys of reactor pressure vessel steels: state-of-the-art positron annihilation spectroscopy, Philos. Mag. 85, 467 (2005)

    Article  CAS  Google Scholar 

  67. T. Moriya, H. Ino, F. E. Fujita, Y. Maeda: Mössbauer effect in iron-carbon martensite structure, J. Phys. Soc. Jpn. 24, 60 (1968)

    Article  CAS  Google Scholar 

  68. K. Nakagawa, K. Maeda, S. Takeuchi: Observation of dislocations in cadmium telluride by cathodoluminescence microscopy, Appl. Phys. Lett. 34, 574 (1979)

    Article  CAS  Google Scholar 

  69. L. N. Pronina, S. Takeuchi, K. Suzuki, M. Ichihara: Dislocation-structures in rolled and annealed (001) [110] single-crystal molybdenum, Philos. Mag. A 45, 859 (1982)

    Article  CAS  Google Scholar 

  70. M. J. Hÿtch, J. Putaux, J. Pénisson: Measurement of the displacement field of dislocations to 0.03 angstrom by electron microscopy, Nature 423, 270 (2003)

    Article  Google Scholar 

  71. R. L. Snyder, J. Fiala, H. J. Bunge: Defect, Microstructure Analysis by Diffraction (Oxford Univ. Press, Oxford 1999)

    Google Scholar 

  72. G. Rhodes: Crystallography: A Guide for Users of Macromolecular Models, 2nd edn. (Academic, San Diego 2000)

    Google Scholar 

  73. Y. Akita: NMR in Proteins (Kyoritsu, Tokyo 1996)

    Google Scholar 

  74. K. Wüthrich: NMR of Proteins and Nucleic Acids (Wiley, New York 1986)

    Google Scholar 

  75. J. K. M. Sanders, B. K. Hunter: Modern NMR Spectroscopy (Oxford Univ. Press, Oxford 1993)

    Google Scholar 

  76. T. D. W. Claridge: High Resolution NMR Techniques in Organic Chemistry (Elsevier, Oxford 1999)

    Google Scholar 

  77. S. Weiss: Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy, Nature Struct. Biol. 7, 724 (2000)

    Article  CAS  Google Scholar 

  78. V. Randle, O. Engler: Introduction to Texture Analysis (Taylor & Francis, London 2000)

    Google Scholar 

  79. D. C. Joy, D. E. Newbury, D. L. Davidson: Electron channeling patterns in the scanning electron-microscope, J. Appl. Phys. 53, R81 (1982)

    Article  CAS  Google Scholar 

  80. K. Suenaga, T. Tence, C. Mori, C. Colliex, H: Kato, T. Okazaki, H.Shinohara, K. Hirahara, S. Bandow, S. Iijima: Element-selective single atom imaging, Science 290, 2280 (2000)

    Article  CAS  Google Scholar 

  81. N. Hayazawa, A. Tarun, Y. Inouye, S. Kawata: Near-field enhanced Raman spectroscopy using side illumination optics, J. Appl. Phys. 92, 6983 (2002)

    Article  CAS  Google Scholar 

  82. R. Snyder, J. Fiala, H. J. Bunge: Defect and Microstructure Analysis by Diffraction (Oxford Univ. Press, Oxford 1999)

    Google Scholar 

  83. B. D. Cullity: Elements of X-ray Diffraction, 2nd edn. (Addison–Wesley, Reading 1978)

    Google Scholar 

  84. M. E. Fitzpatrick, A. Lodini: Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation (CRC, Boca Raton 2004)

    Google Scholar 

  85. K. Hono: Nanoscale microstructural analysis of metallic materials by atom probe field ion microscopy, Prog. Mater. Sci. 47, 621 (2002)

    Article  CAS  Google Scholar 

  86. H. Jinnai, Y. Nishikawa, T. Ikehara, T. Nishi: Emerging technologies for the 3D analysis of polymer structures, Adv. Polymer Sci. 170, 115 (2004)

    CAS  Google Scholar 

  87. A. Momose: Phase-contrast X-ray imaging based on interferometry, J. Synchrotron Rad. 9, 136 (2002)

    Article  Google Scholar 

  88. A. Momose: Demonstration of phase-contrast X-ray computed tomography using an X-ray interferometer, Nucl. Instrum. Methods A 352, 622 (1995)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Koji Maeda Prof. or Hiroshi Mizubayashi Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Maeda, K., Mizubayashi, H. (2006). Nanoscopic Architecture and Microstructure. In: Czichos, H., Saito, T., Smith, L. (eds) Springer Handbook of Materials Measurement Methods. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30300-8_5

Download citation

Publish with us

Policies and ethics