Biogenic Impact on Materials

Abstract

Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made.

Keywords

Chlorophyll Manifold Mold Calcite Nitrite 

Abbreviations

AFM

atomic force microscopy

AFNOR

Association Française de Normalisation

ARDRA

amplified Ribosomal DNA Restriction Analysis

ASTM

American Society for Testing and Materials

CEN

European Standardisation Organisation

DIN

Deutsches Institut für Normung

DOC

dissolved organic carbon

EPS

extracellular polymeric substances

FISH

fluorescence in situ hybridization

GC

gas chromatography

IBRG

International Biodeterioration Research Group

ICR

ion cyclotron resonance

ISO

International Organization for Standardization

JIS

Japanese Standardization Organization

MIC

microbially induced corrosion

MITI

Ministry of International Trade and Industry of Japan

MOE

modulus of elasticity

OECD

Organization for Economic Cooperation and Development

PCR

polymerase chain reaction

PVC

polyvinyl chloride

RAPD

random amplified polymorphic DNA

RFLP

restriction fragment length polymorphism

RH

relative humidity

SCLM

scanning confocal laser microscopy

SEM

scanning electron microscope

UNI

Ente Nationale Italiano di Unificazione

VOC

volatile organic carbon

rRNA

ribosomal RNA

References

  1. 14.1.
    H. W. Rossmore (ed): Handbook of Biocide and Preservative Use (Blackie Academic, London 1995)Google Scholar
  2. 14.2.
    A. D. Russell, W. B. Hugo, G. A. J. Ayliffe (eds): Principles and Practice of Disinfection, Preservation and Sterilization (Blackwell Science, Oxford 1999) pp. 124–144Google Scholar
  3. 14.3.
    W. Paulus: Directory of Microbicides for the Protection of Materials: A Handbook (Kluwer Academic, Dordrecht 2005)Google Scholar
  4. 14.4.
    J. S. Webb, M. Nixon, I. M. Eastwood, M. Greenhalgh, G. D. Robson, P. S. Handley: Fungal colonization and biodeterioration of plasticised PVC, Appl. Environ. Microbiol. 66, 3194–3200 (2000)Google Scholar
  5. 14.5.
    D. J. Knight, M. Coole (eds): The Biocide Business: Regulation, Safety and Applications (Wiley-VCH, Weinheim 2002)Google Scholar
  6. 14.6.
    January 2006 Version of the Manual of Decisions For Implementation of Directive 98/8/EC Concerning the Placing on the Market of Biocidal ProductsGoogle Scholar
  7. 14.7.
    S. D. Worley, Y. Chen: Biocidal polystyrene hydantoin particles, US Patent 6548054 (2001)Google Scholar
  8. 14.8.
    D. Grosser: Pflanzliche und tierische Bau- und Werkholz-Schädlinge (DRW, Leinfelden 1985)Google Scholar
  9. 14.9.
    J. G. Wilkinson: Industrial Timber Preservation. In: The Rentokil Library, Chapt. 5. The deterioration of wood (Associated Business Press, London 1979) pp. 87–125Google Scholar
  10. 14.10.
    S. Anagnost: Light microscopic diagnosis of wood decay, IAWA 19(2), 141–167 (1998)Google Scholar
  11. 14.11.
    J. E. Winandy, J. J. Morrell: Relationship between incipient decay, strength and chemical composition of Douglas Fir heartwood, Wood Fibre Sci. 25(3), 278–288 (1993)Google Scholar
  12. 14.12.
    J. Bodig: The process of NDE research for wood and wood composites, e-J. Nondestruct. Test. 6(3) (2001) www.ndt.net, March 2001
  13. 14.13.
    R. Ross, R. F. Pellerin: Nondestructive testing for assessing wood members in structures: a review. Ge. Tech. Rep. FPL-GTR-70 (rev.) (U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI 1994) p. 40Google Scholar
  14. 14.14.
    M. Grinda: A field study on the suitability of the European lap-joint test. The Int. Res. Group Wood Preserv., Document IRG/WP 01-20239 (IRG, Stockholm 2001)Google Scholar
  15. 14.15.
    T. Nilsson, M. L. Edlund: Laboratory versus field tests for evaluating wood preservatives: A scientific view, IRGWP 00-20205 (IRG, Stockholm 2000)Google Scholar
  16. 14.16.
    CEN/TR 14723: Durability of Wood and Wood-based Products – Field and Accelerated Conditioning Tests (FACT) for Wood Preservative out of Ground Contact (CEN, European Committee for Standardization, Brussels 2003)Google Scholar
  17. 14.17.
    L. Machek, H. Militz, R. Sierra-Alvarez: The use of an acoustic technique to detect wood decay in laboratory soil-bed tests, Wood Sci. Technol. 34, 467–472 (2001)Google Scholar
  18. 14.18.
    S. C. Jones, H. N. Howell (eds): Wood-destroying insects, Handbook of Household and Structural Pests (Entomological Soc. America, Lanham 2000) pp. 99–127Google Scholar
  19. 14.19.
    R. A. Haack, T. M. Poland, T. R. Petrice, C. Smith, D. Treece, G. Allgood: Acoustic detection of Anoplophora glabripennis and native woodborers (Coleoptera: Cerambycidae). Gen. Tech. Rep. NE 285 (Proc. U.S. Department Agriculture Interagency Research Forum Gypsy Moth and Other Invasive Species, 2001) pp. 74–75Google Scholar
  20. 14.20.
    S. E. Brooks, F. M. Oi, P. G. Koehler: Ability of canine termite detectors to locate live termites and discriminate them from non-termite material, J. Economic Entomol. 96, 1259–1266 (2003)Google Scholar
  21. 14.21.
    J-D. Gu: Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances, Int. Biodeter. Biodegr. 52, 69–91 (2003)Google Scholar
  22. 14.22.
    W. H. Stahl, H. Pessen: Funginertness of interally plasticized polymers, Mod. Plast. 54, 111–112 (1954)Google Scholar
  23. 14.23.
    S. Berk, H. Ebert, L. Teitell: Utilization of plasticizers and related organic components by fungi, L. Ind. Eng. Chem. Res. 49(7), 1115–1123 (1957)Google Scholar
  24. 14.24.
    M. Pantke: Test methods for evaluation of susceptibility of plasticised PVC and its components to microbial attacking. In: Biodeterioration Investigation Techniques, ed. by H. Waters (Applied Science Publ., London 1977) pp. 51–76Google Scholar
  25. 14.25.
    V. T. Breslin: Degradation of starch-plastic composites in a municipal solid waste landfill, J. Environ. Polym. Degr. 1(2), 127–141 (1993)Google Scholar
  26. 14.26.
    N. S. Allen, M. Edge, T. S. Jewitt, C. V. Horie: Initiation of the degradation of cellulose triacetate base motion picture film, J. Photogr. Sci. 38(2), 54–59 (1990)Google Scholar
  27. 14.27.
    W. G. Glasser, B. K. McCartney, G. Samaranayake: Cellulose Derivatives with low degree of substitution: 3. The biodegradability of cellulose esters using a simple enzyme assay, Biotechnol. Prog. 10, 214–219 (1994)Google Scholar
  28. 14.28.
    Y. Tokiwa, T. Suzuki: Hydrolysis of polyesters by lipase, Nature 270, 76–78 (1977)Google Scholar
  29. 14.29.
    E. Marten, R.-J. Müller, W.-D. Deckwer: Studies on the enzymatic hydrolysis of polyesters: I. Low molecular mass model esters and aliphatic Polym. polyesters, Degr. Stab. 80(3), 485–501 (2003)Google Scholar
  30. 14.30.
    E. Marten, R.-J. Müller, W.-D. Deckwer: Studies on the enzymatic hydrolysis of polyesters: II. Aliphatic-aromatic copolyesters, Polym. Degr. Stabil. 88(3), 371–381 (2005)Google Scholar
  31. 14.31.
    A. Linos, M. M. Berekaa, R. Reichelt, U. Keller, J. Schmitt, H.-C. Flemming, R. M. Kroppenstedt, A. Steinbüchel: Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis, Appl. Environ. Microbiol. 66(4), 1639–1645 (2000)Google Scholar
  32. 14.32.
    U. Pagga: Testing biodegradability with standardized methods, Chemosphere 35(12), 2953–2972 (1997)Google Scholar
  33. 14.33.
    K. J. Seal, H. O. W. Eggins: The biodeterioration of materials. In: Essays in applied microbiology, ed. by J. R. Norris, M. H. Richmond (Wiley, New York 1981)Google Scholar
  34. 14.34.
    M. Pantke: Test methods for evaluation of susceptibility of plasticised PVC and its components to microbial attack. In: Biodeterioration Investigation Techniques, ed. by H. Waters (Applied Science Publ., London 1977) pp. 51–76Google Scholar
  35. 14.35.
    M. Itävaara, M. Vikman: An overview of methods for biodegradability testing of biopolymers and packaging materials, J. Environ. Polym. Degr. 4(1), 29–36 (1996)Google Scholar
  36. 14.36.
    M. Pantke, K. J. Seal: An interlaboratory investigation into the biodeterioration testing of plastics, with special reference to polyurethanes; Part 2: Soil burial experiments, Mater. Organismen 25(2), 88–98 (1990)Google Scholar
  37. 14.37.
    U. Pagga, D. B. Beimborn, J. Boelens, B. DeWilde: Determination of the biodegradability of polymeric material in a laboratory controlled composting test, Chemosphere 31(11/12), 4475–4487 (1995)Google Scholar
  38. 14.38.
    M. Tosin, F. Degli Innocenti, C. Bastioli: Effect of the composting substrate on biodegradation of solid materials under controlled composting, J. Conditions Environ. Polym. Degr. 4(1), 55–63 (1996)Google Scholar
  39. 14.39.
    A. Ohtaki, N. Sato, K. Nakasaki: Biodegradation of poly(ε-caprolactone) under controlled composting conditions, Polym. Degr. Stabil. 61(3), 499–505 (1998)Google Scholar
  40. 14.40.
    J. Tuominen, J. Kylmä, A. Kapanen, O. Venelampi, M. Itävaara, J. Seppälä: Biodegradation of lactic acid based polymers under controlled composting conditions and evaluation of the ecotoxicological impact, Biomacromol. 3(3), 445–455 (2002)Google Scholar
  41. 14.41.
    F. Degli-Innocenti, M. Tosin, C. Bastioli: Evaluation of the biodegradation of starch and cellulose under controlled composting conditions, J. Environ. Polym. Degr. 6(4), 197–202 (1998)Google Scholar
  42. 14.42.
    S. M. McCartin, B. Press, D. Eberiel, S. P. McCarthy: Simulated landfill study on the accelerated biodegradability of plastics materials, Amer. Chem. Soc. Polym. Prepr. 31(1), 439–440 (1990)Google Scholar
  43. 14.43.
    G. P. Smith, B. Press, D. Eberiel, S. P. McCarthy, R. A. Gross, D. L. Kaplan: An accelerated in laboratory test to evaluate the degradation of plastics in landfill environments, Polym. Mater. Sci. Eng. 63, 862–866 (1990)Google Scholar
  44. 14.44.
    S. P. McCarthy, M. Gada, G. P. Smith, V. Tolland, B. Press, D. Eberiel, C. Bruell, R. A. Gross: The accelerated biodegradability of plastic materials in simulated compost and landfill environments, Annu. Tech. Conf. – Soc. Plast. Eng. 50(1), 816–818 (1992)Google Scholar
  45. 14.45.
    P. Püchner, W. R. Müller, D. Bartke: Assessing the biodegradation potential of polymers in screening- and long-term test systems, J. Environ. Polym. Degr. 3(3), 133–143 (1995)Google Scholar
  46. 14.46.
    T. Walter, J. Augusta, R.-J. Müller, H. Widdecke, J. Klein: Enzymatic degradation of a model polyester by lipase, Enzyme Microbiol. Technol. 17, 218–224 (1995)Google Scholar
  47. 14.47.
    M. Vikman, M. Itävaara, K. Poutanen: Measurement of the biodegradation of starch based materials by enzymatic methods and composting, J. Environ. Polym. Degr. 3(1), 23–29 (1995)Google Scholar
  48. 14.48.
    Z. Gan, J. F. Fung, X. Jing, C. Wu, W. M. Kulicke: A novel laser light scattering study of enzymatic biodegradation of poly(caprolactone) nanoparticles, Polymer 40(8), 1961–1967 (1999)Google Scholar
  49. 14.49.
    K. Welzel, R.-J. Müller, W.-D. Deckwer: Enzymatischer Abbau von Polyester-Nanopartikeln, Chem. Ing. Tech. 74(10), 1496–1500 (2002)Google Scholar
  50. 14.50.
    E. Ikada: Electron microscope observation of biodegradation of polymers, J. Environ. Polym. Degr. 7(4), 197–201 (1999)Google Scholar
  51. 14.51.
    D. Abou-Zeid: Anaerobic biodegradation of natural and synthetic polyesters Ph.D. Thesis (Technical University Braunschweig, Germany 2001)Google Scholar
  52. 14.52.
    Y. Kikkawa, H. Abe, T. Iwata, Y. Inoue, Y. Doi: Crystal morphologies and enzymatic degradation of melt crystallized thin films of random copolyesters of (R) 3-hydroxybutyric acid with (R) 3-hydroxyalkanoic acids, Polym. Degr. Stabil. 76(3), 467–478 (2002)Google Scholar
  53. 14.53.
    B. Erlandsson, S. Karlsson, A.-C. Albertsson: The mode of action of corn starch and a prooxidant system in LDPE: influence of thermooxidation and UV irradation on the molecular weight changes, Polym. Degr. Stabil. 55, 237–245 (1997)Google Scholar
  54. 14.54.
    V. T. Breslin: Degradation of starch plastic composites in a municipal solid waste landfill, J. Environ. Polym. Degr. 1(2), 127–141 (1993)Google Scholar
  55. 14.55.
    H. Tsuji, K. Suzuyoshi: Environmental degradation of biodegradable polyesters 1. Poly(ε-caprolactone), poly[(R) 3 hydroxybutyrate], and poly(L lactide) films in controlled static seawater, Polym. Degr. Stabil. 75(2), 347–355 (2002)Google Scholar
  56. 14.56.
    U. Witt, T. Einig, M. Yamamoto, I. Kleeberg, W.-D. Deckwer, R.-J. Müller: Biodegradation of aliphatic-aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates, Chemosphere 44(2), 289–299 (2001)Google Scholar
  57. 14.57.
    J. Hoffmann, I. Reznicekova, S. Vanökovä, J. Kupec: Manometric determination of biological degradability of substances poorly soluble in aqueous environments, Int. Biodeter. Biodegr. 39(4), 327–332 (1997)Google Scholar
  58. 14.58.
    U. Pagga, A. Schäfer, R.-J. Müller, M. Pantke: Determination of the aerobic biodegradability of polymeric material in aquatic batch tests, Chemosphere 42(3), 319–331 (2001)Google Scholar
  59. 14.59.
    A. Calmon, L. Dusserre Bresson, V. Bellon Maurel, P. Feuilloley, F. Silvestre: An automated test for measuring polymer biodegradation, Chemosphere 41(5), 645–651 (2000)Google Scholar
  60. 14.60.
    W. R. Müller: Sauerstoff und Kohlendioxid gleichzeitig messen, LaborPraxis Sept. 1999, 94–98 (1999)Google Scholar
  61. 14.61.
    R. Solaro, A. Corti, E. Chiellini: A new respirometric test simulating soil burial conditions for the evaluation of polymer biodegradation, J. Environ. Polym. Degrad 5(4), 203–208 (1998)Google Scholar
  62. 14.62.
    M. Itävaara, M. Vikman: A simple screening test for studying the biodegradability of insoluble polymers, Chemosphere 31(11/12), 4359–4373 (1995)Google Scholar
  63. 14.63.
    K. Richterich, H. Berger, J. Steber: The ‘two phase closed bottle test’ a suitable method for the determination of ‘ready biodegradability’ of poorly soluble compounds, Chemosphere 37(2), 319–326 (1998)Google Scholar
  64. 14.64.
    G. Bellina, M. Tosin, G. Floridi, F. Degli Innocenti: Activated vermiculite, a solid bed for testing biodegradability under composting conditions, Polym. Degr. Stabil. 66(1), 65–79 (1999)Google Scholar
  65. 14.65.
    G. Bellina, M. Tosin, F. Degli Innocenti: The test method of composting in vermiculite is unaffected by the priming effect, Polym. Degr. Stabil. 69, 113–120 (2000)Google Scholar
  66. 14.66.
    A. M. Buswell, H. F. Müller: Mechanism of methane fermentation, Ind. Eng. Chem. 44(3), 550–552 (1952)Google Scholar
  67. 14.67.
    D.-M. Abou-Zeid, R.-J. Müller, W.-D. Deckwer: Degradation of natural and synthetic polyesters under anaerobic conditions, J. Biotechnol. 86(2), 113–126 (2001)Google Scholar
  68. 14.68.
    D.-M. Abou-Zeid, R.-J. Müller, W.-D. Deckwer: Biodegradation of aliphatic homopolyesters and aliphatic-aromatic copolyesters by anaerobic microorganisms, Biomacromol. 5(5), 1687–1697 (2004)Google Scholar
  69. 14.69.
    S. Gartiser, M. Wallrabenstein, G. Stiene: Assessment of several test methods for the determination of the anaerobic biodegradability of polymers, J. Environ. Polym. Degr. 6(3), 159–173 (1998)Google Scholar
  70. 14.70.
    A. Reischwitz, E. Stoppok, K. Buchholz: Anaerobic degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate), Biodegr. 8, 313–319 (1998)Google Scholar
  71. 14.71.
    K. Budwill, P. M. Fedorak, W. J. Page: Anaerobic microbial degradation of poly(3-hydroxyalkanoates) with various terminal electron acceptors, J. Environ. Polym. Degr. 4(2), 91–102 (1996)Google Scholar
  72. 14.72.
    A.-C. Albertsson: Biodegradation of synthetic polymers II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi, J. Appl. Polym. Sci. 22, 3419–3433 (1978)Google Scholar
  73. 14.73.
    M. Tuomela, A. Hatakka, S. Raiskila, M. Vikman, M. Itävaara: Biodegradation of radiolabelled synthetic lignin (14C DHP) and mechanical pulp in a compost environment, Appl. Microbiol. Biotechnol. 55(4), 492–499 (2001)Google Scholar
  74. 14.74.
    H. Nishida, Y. Tokiwa: Distribution of poly(β-hydroxybutyrate) and poly(ε-caprolactone) aerobic degrading microorganisms in different environments, J. Environ. Polym. Degr. 1(3), 227–233 (1993)Google Scholar
  75. 14.75.
    J. Augusta, R.-J. Müller, H. Widdecke: A rapid evaluation plate test for the biodegradability of plastics, Appl. Microbiol. Biotechnol. 39, 673–678 (1993)Google Scholar
  76. 14.76.
    Y. Tokiwa, T. Ando, T. Suzuki, T. Takeda: Biodegradation of synthetic polymers containing ester bonds, Polym. Mater. Sci. Eng. 62, 988–992 (1990)Google Scholar
  77. 14.77.
    K. E. Jäger, A. Steinbüchel, D. Jendrossek: Substrate specificities of bacterial polyhydroxyalkanoate depolymerase and lipases: Bacterial lipases hydrolyze poly(T-hydroxyalkanoates), Appl. Environ. Microbiol. 61(8), 3113–3118 (1995)Google Scholar
  78. 14.78.
    A. Calmon Decriaud, V. Bellon Maurel, F. Silvestre: Standard methods for testing the aerobic biodegradation of polymeric materials. Review and perspectives, Adv. Polym. Sci. 135, 207–226 (1998)Google Scholar
  79. 14.79.
    H. Sawada: ISO standard activities in standardization of biodegradability of plastics development of test methods and definitions, Polym. Degr. Stabil. 59(1-3), 365–370 (1998)Google Scholar
  80. 14.80.
    M. Avella, E. Bonadies, E. Martuscelli, R. Rimedio: European current standardization for plastic packaging recoverable through composting and biodegradation, Polym. Test. 20(5), 517–521 (2001)Google Scholar
  81. 14.81.
    F. Degli Innocenti, C. Bastioli: Definition of compostability criteria for packaging: Initiatives in Italy, J. Environ. Polym. Degr. 5(4), 183–189 (1997)Google Scholar
  82. 14.82.
    J. D. Gu, S. Coulter, D. Eberiel, S. P. McCarthy, R. A. Gross: A respirometric method to measure mineralization of polymeric materials in a matured compost environment, J. Environ. Polym. Degr. 1(4), 293–299 (1993)Google Scholar
  83. 14.83.
    A. Starnecker, M. Menner: Assessment of biodegradability of plastics under simulated composting conditions in a laboratory test system, Int. Biodeter. Biodegr. 37, 85–92 (1996)Google Scholar
  84. 14.84.
    M. Van der Zee, J. H. Stoutjesdijk, H. Feil, J. Feijen: Relevance of aquatic biodegradation tests for predicting degradation of polymeric materials during biological solid waste treatment, Chemosphere 36(3), 461–473 (1998)Google Scholar
  85. 14.85.
    U. Pagga: Compostable packaging materials test methods and limit values for biodegradation, Appl. Microbiol. Biotechnol. 51(2), 125–133 (1999)Google Scholar
  86. 14.86.
    M. Itävaara, M. Vikman, O. Venelampi: Windrow composting of biodegradable packaging materials, Compost Sci. Util. 5(2), 84–92 (1997)Google Scholar
  87. 14.87.
    M. H. Dang, F. Birchler, E. Wintermantel: Toxocity screening of biodegradable polymers II. Evaluation of cell culture test with medium extract, J. Environ. Polym. Degr. 5(1), 49–56 (1997)Google Scholar
  88. 14.88.
    F. Degli Innocenti, G. Bellia, M. Tosina, A. Kapanen, M. Itävaara: Detection of toxicity released by biodegradable plastics after composting in activated vermiculite, Polym. Degr. Stabil. 73(1), 101–106 (2001)Google Scholar
  89. 14.89.
    M. Day, K. Shaw, D. Cooney: Biodegradability: an assessment of commercial polymers according to the Canadian method for anaerobic conditions, J. Environ. Polym. Degr. 2, 121–127 (1994)Google Scholar
  90. 14.90.
    N. E. Sharabi, R. von Bartha: Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution, Appl. Environ. Microbiol. 59(4), 1201–1205 (1993)Google Scholar
  91. 14.91.
    Y. Yakabe, N. Kazuo, T. Hara, Y. Fujin: Factors affecting the biodegradability of biodegradable polyesters in soil, Chemosphere 25(12), 1879–1888 (1992)Google Scholar
  92. 14.92.
    A. Calmon, S. Guillaume, V. Bellon Maurel, P. Feuilloley, F. Silvestre: Evaluation of material biodegradability in real conditions Development of a burial test and an analysis methodology based on numerical vision, J. Environ. Polym. Degr. 7(3), 157–166 (1999)Google Scholar
  93. 14.93.
    K. L. G. Ho, L. Pometto: Temperature effects on soil mineralization of polylactic acid plastic in laboratory respirometers, J. Environ. Polym. Degr. 7(2), 101–108 (1999)Google Scholar
  94. 14.94.
    H. Nishide, K. Toyota, M. Kimura: Effects of soil temperature and anaerobiosis on degradation of biodegradable plastics in soil and their degrading microorganisms, Soil Sci. Nutr. 45(4), 963–972 (1999)Google Scholar
  95. 14.95.
    S. Grima, V. Bellon Maurel, P. Feuilloley, F. Silvestre: Aerobic biodegradation of polymers in solid state conditions: A review of environmental and physicochemical parameter settings in laboratory, J. Environ. Polym. Degr. 8(4), 183–195 (2000)Google Scholar
  96. 14.96.
    E. Abrams: Microbiological Deterioration of Organic Material: Its prevention and Methods of Test. Wash. Nat. Bur. Stand. Misc. Publ. 188 (NBS, Washington 1948)Google Scholar
  97. 14.97.
    J. La Brijn, H. R. Kauffman: Fungal Testing of Textiles: A Summary of the Cooperative Experiments Carried Out by the Working Group on Textiles of the International Biodeterioration Research Group (IBRG). In: Biodeterioration of Materials, Vol. 2, ed. by A. H. Walters, E. H. Heuck Van de Plas (Applied Science Pub., London 1972)Google Scholar
  98. 14.98.
    J. S. Webb, M. Nixon, I. M. Eastwood, M. Greenhalgh, G. D. Robson, P. S. Handley: Fungal colonization and biodeterioration of plasticised PVC, Appl. Environ. Microbiol. 66, 3194–3200 (2000)Google Scholar
  99. 14.99.
    M. Stranger-Johannessen: The role of microorganisms in the formation of pitch deposits in pulp and paper mills, Biotechnol. Adv. 2(2), 319–327 (1984)Google Scholar
  100. 14.100.
    H. R. Arai: Microbiological studies on the conservation of paper and related cultural properties (Part 1): Isolation of fungi from the foxing on paper, Sci. Conserv. 23, 33–39 (1984)Google Scholar
  101. 14.101.
    W. K. Wilson: Environmental Guidelines for the Storage of Paper Records, NISO-TR01-1995, ISSN 1081-8006 (1995)Google Scholar
  102. 14.102.
    W. Paulus: Directory of Microbicides for the Protection of Materials: A Handbook (Kluwer, Dordrecht 2005)Google Scholar
  103. 14.103.
    European Community: Doc-Biocides-2002/04-Rev3 Guidance document agreed between the Commission services and the competent authorities of the Member States for the Biocidal Products Directive 98/8/EC – Guidance Notes on Treated Articles (2004)Google Scholar
  104. 14.104.
    W. Hewitt, S. Vincent: Theory and Practice of Microbiological Assay (Academic, New York 1989)Google Scholar
  105. 14.105.
    Dr. P. Raschle: Personal CommunicationGoogle Scholar
  106. 14.106.
    Svensk Standard SS 876 00 19 Sjukvårdstextil – Bakteriepenetration – Våt (Bacterial Penetration Test) (1994)Google Scholar
  107. 14.107.
    EDANA Test Method 190.1-02 Dry Bacterial Penetration (2002)Google Scholar
  108. 14.108.
    EDANA Test Method 200.1-02 Wet Bacterial Penetration (2002)Google Scholar
  109. 14.109.
    W. E. Krumbein, B. D. Dyer: This planet is alive. Weathering and biology, a multi-facetted problem. In: The Chemistry of Weathering, ed. by J. M. Drever (Reidel, Dordrecht 1985) pp. 143–160Google Scholar
  110. 14.110.
    C. Gehrmann, W. E. Krumbein, K. Petersen: Lichen weathering activities on mineral and rock surfaces, Studia Geobot. 8, 33–45 (1988)Google Scholar
  111. 14.111.
    C. Gehrmann, K. Petersen, W. E. Krumbein: Silicole and calcicole lichens on jewish tombstones – interaction with the environment and biocorrosion, VI. Int. Congress on deterioration and conservation of stone 1988 (Nicholas Kopernikus Univ., Torun 1988) pp. 33–38Google Scholar
  112. 14.112.
    A. Villa: Desherbement des surfaces recouvertes de mosaiques a ciel ouvert. In: Atti I Congresso sulla Conservazione dei Mosaici (ICROM, Roma 1977) pp. 45–49Google Scholar
  113. 14.113.
    H. L. Ehrlich: Geomicrobiology (Marcel Dekker Inc., New York 1990)Google Scholar
  114. 14.114.
    F. E. W. Eckhardt: Solubilization, transport and deposition of mineral cations bymicroorganisms. Efficient rock weathering agents. In: Chemistry of weathering, ed. by J. I. Drever (Reidel, New York 1985) pp. 161–173Google Scholar
  115. 14.115.
    W. E. Krumbein, K. Jens: Biogenic rock varnishes of the Negev Desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi, Oecologia 50, 25–38 (1981)Google Scholar
  116. 14.116.
    C. Jaton, G. Orial: Processus microbiologiques des alterations des briques. In: Atti Convegno “Il mattone di” (Fondazione Cini, Venezia 1979) p. 163Google Scholar
  117. 14.117.
    A. Koestler, E. Charola, M. Wypyski: Microbiologically induced deterioration of dolomitic and calcitic stone as viewed by scanning electron microscopy, Proc. Vth Int. Congr. Deterioration Conservation of Stone (Presses Polytechniques Romandes, Lausanne 1985) pp. 617–626Google Scholar
  118. 14.118.
    W. E. Krumbein: Role des microrganismes dans la genese, la diagenese et la degradation des roches en place, Rev. Ecol. Biol. Sol 9, 283–319 (1972)Google Scholar
  119. 14.119.
    W. E. Krumbein, J. Pochon: Ecologie bacterienne des pierres alterres des monuments, Ann. Inst. Pasteur 107, 724–732 (1964)Google Scholar
  120. 14.120.
    M. Thiebaud, J. Lajudie: Associations bacteriennes et alterations biologiques des monuments en pierre calcaire, Ann. Inst. Pasteur 105, 353–358 (1963)Google Scholar
  121. 14.121.
    H. Kaltwasser: Destruction of concrete by nitrification, J. Appl. Microbiol. 3, 185–192 (1976)Google Scholar
  122. 14.122.
    J. Kauffmann: Roles des bacteries nitrificantes dans l'alteration des pierres calcaires des monuments, Compt. Rend. Acad. Sci. 34, 2995 (1952)Google Scholar
  123. 14.123.
    J. Kauffmann: Corrosion et protection des pierres calcaires des monuments, Corrosion Anticorrosion 8, 87–95 (1960)Google Scholar
  124. 14.124.
    E. Bock, W. Sand, M. Meincke, B. Wolters, B. Ahlers, C. Meyer, F. Sameluck: Biologically induced corrosion of natural stones. Strong contamination of monuments with nitrifying organisms. In: Biodeterioration, ed. by D. R. Hughton, R. N. Smith, H. O. W. Eggings (Elsevier Applied Sci., London 1987) pp. 436–440Google Scholar
  125. 14.125.
    W. E. Krumbein: Patina and cultural heritage – a geomicrobiologist's perspective. In: Cultural heritage research: a Pan European Challenge. European Communities, ed. by R. Kozlowski (Academy of Science, Krakow 2003) p. 415Google Scholar
  126. 14.126.
    S. G. Paine, F. V. Lingood, F. Schimmer, T. C. Thrupp: The relationship of micro-organisms to the decay of stone, Phil. Trans. Royal Soc. London Ser. B 222, 97–127 (1933)Google Scholar
  127. 14.127.
    W. E. Krumbein: Zur Frage der Gesteinsverwitterung. Über geochemische und mikrobiologische Bereiche der exogenen Dynamik Ph.D. Thesis (Univ. Würzburg 1966) p. 149Google Scholar
  128. 14.128.
    F. E. W. Eckhardt: Microbial degradation of silicates – Release of cations from aluminosilicate minerals by yeasts and filamentous fungi. In: Biodeterioration, ed. by T. A. Oxley, G. Becker, D. Allsopp (Pitman, The Biodeterioration Society, London 1978) pp. 107–116Google Scholar
  129. 14.129.
    W. E. Krumbein: Zur Frage der biologischen Verwitterung: Einfluß der Mikroflora auf die Bausteinverwitterung und ihre Abhängigkeit von edaphischen Faktoren, Z. Allg. Mikrobiol. 8, 107–117 (1968)Google Scholar
  130. 14.130.
    W. E. Krumbein: Über den Einfluß von Mikroorganismen auf die Bausteinverwitterung – eine ökologische Studie, Deut. Kunst Denkmalpflege 31, 54–71 (1973)Google Scholar
  131. 14.131.
    D. M. Webley, M. E. K. Henderson, I. F. Taylor: The microbiology of rocks and weathered stones, J. Soil Sci. 14, 102–112 (1963)Google Scholar
  132. 14.132.
    W. E. Krumbein: private communicationGoogle Scholar
  133. 14.133.
    Th. Warscheid: Untersuchungen zur Biodeterioration von Sandsteinen unter besonderer Berücksichtigung der chemoorganotrophen Bakterien Ph.D. Thesis (Univ. Oldenburg 1990) p. 147Google Scholar
  134. 14.134.
    A. Vuorinen, S. Mantere-Almonen, R. Uusinoka, P. Alhonen: Bacterial weathering of Rapabiu granite, Geomicrobiol. J. 2, 317–325 (1981)Google Scholar
  135. 14.135.
    F. Lewis, E. May, B. Daley, A. F. Bravery: The role of heterotrophic bacteria in the decay of sandstone from ancient monuments. In: Biodeterioration of Constructional Materials. Proc. Summer Meeting of the Biodeterioration Soc. (Biodeterioration Society, Delft 1987) pp. 45–53Google Scholar
  136. 14.136.
    A. A. Gorbushina, W. E. Krumbein, M. Volkmann: Rock surfaces as life indicators: New ways to demonstrate lifes and traces of former life (Astrobiology Vol.2, 203-213, 2002)Google Scholar
  137. 14.137.
    S. T. Williams: Streptomycetes in biodeterioration. Their relevance, detection and identification, Int. Biodet. 21, 201–209 (1985)Google Scholar
  138. 14.138.
    B. Chamier: Über den Einfluß von Actinomyceten auf die Materialzerstörung. M. Sc. Thesis (Univ. Oldenburg, 1991) p. 113Google Scholar
  139. 14.139.
    J. M. B. Coppock, E. D. Cookson: The effect of humidity on mould growth constructional materials, J. Sci. Food Agri. 2, 534–537 (1952)Google Scholar
  140. 14.140.
    M. E. K. Henderson, R. B. Duff: The release of metallic and silicate ions from minerals, rocks and solis by fungal activity, J. Soil Sci. 14, 236–246 (1963)Google Scholar
  141. 14.141.
    H.-C. Flemming: Biofilme und ihre Bedeutung für die mikrobielle Materialzerstörung. In: Mikrobielle Materialzerstörung, ed. by H. Brill (Georg Fischer, Stuttgart 1995) pp. 24–47Google Scholar
  142. 14.142.
    H.-C. Flemming: Auswirkungen mikrobieller Materialzerstörung. In: Mikrobielle Materialzerstörung, ed. by H. Brill (Georg Fischer, Stuttgart 1995) pp. 15–23Google Scholar
  143. 14.143.
    H.-C. Flemming: Mikrobielle Korrosion von Beton. In: Zementgebundene Beschichtungen in Trinkwasserbehältern, ed. by H. Wittmann, A. Gerdes (Aedificatio, Freiburg 1996) pp. 53–65Google Scholar
  144. 14.144.
    W. E. Krumbein: Über den Einfluß der Mikroflora auf die exogene Dynamik (Verwitterung und Krustenbildung), Geol. Rdsch. 58, 333–363 (1969)Google Scholar
  145. 14.145.
    G. Grote: Mikrobieller Mangan- und Eisentransfer an Rock Varnish und Petroglyphen arider Gebiete Ph.D. Thesis (Univ. Oldenburg, 1991) p. 335Google Scholar
  146. 14.146.
    W. E. Krumbein: Mikrobiologische Prozesse und Baumaterialveränderung. In: 2. Int. Kolloquium: Werkstoffwissenschaften und Bausanierung, ed. by F. H. Wittmann (Technische Akademie, Esslingen 1986) pp. 45–62Google Scholar
  147. 14.147.
    A. Gorbushina, W. E. Krumbein, L. Panina, S. Soukharjevsk, U. Wollenzien: On the role of black fungi in color change and biodeterioration of antique marbles, Geomicrobiol. J. 11, 205–221 (1993)Google Scholar
  148. 14.148.
    W. E. Krumbein, J. Pochon, M. A. Chalvignac: Recherches biologiques sur le Mondmilch, C. R. Acad. Sci. (Paris) 258, 5113–5114 (1964)Google Scholar
  149. 14.149.
    D. Jones, M. J. Wilson: Chemical activities of lichens on mineral surfaces – A review, Int. Biodet. Bull. 21, 99–104 (1985)Google Scholar
  150. 14.150.
    A. Danin, R. Gerson, J. Garty: Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: supporting evidence for eolian contribution to Terra Rossa Soil, Soil Sci. 136, 213–217 (1983)Google Scholar
  151. 14.151.
    D. Allsopp, K. S. Seal: Introduction to Biodeterioration (Edward Arnold, London 1986)Google Scholar
  152. 14.152.
    T. E. Ford, J. S. Maki, R. Mitchell: Involvement of bacterial exopolymers in biodeterioration of metals. In: Biodeterioration, Vol. 7, ed. by D. R. Hughton, R. N. Smith, H. O. W. Eggings (Elsevier Applied Sci., London 1987) pp. 378–384Google Scholar
  153. 14.153.
    J. W. Costerton, G. G. Geesey, P. A. Jones: Bacterial biofilms in relation to internal corrosion monitoring and biocide strategies, Mat. Perform. 12, 49–53 (1988)Google Scholar
  154. 14.154.
    W. Kerner-Gang: Zur Frage der Entstehung von Schimmelpilzspuren auf optischen Gläsern, Material and Organismen 3, 1–17 (1968)Google Scholar
  155. 14.155.
    W. Kerner-Gang: Evaluation techniques for resistance of optical lenses to fungal attack. In: Biodeterioration Investigation Techniques, ed. by A. H. Walters (Appl. Sci. Publ., London 1977) pp. 105–114Google Scholar
  156. 14.156.
    R. Newton, S. Davison: Conservation of glass (Butterworth, London 1989)Google Scholar
  157. 14.157.
    E. Mellor: Les lichen vitricole et la deterioration des vitraux d'eglise. These (Paris 1922)Google Scholar
  158. 14.158.
    E. Mellor: Lichens and their action on the glass and leadings of church windows, Nature (London) 112, 299–300 (1923)Google Scholar
  159. 14.159.
    N. H. Tennent: Fungal growth on medieval glass, J. Br. Soc. Master Glass Painters 17, 64–68 (1981)Google Scholar
  160. 14.160.
    G. Callot, M. Maurette, L. Pottier, A. Dubois: Biogenic etching of microfractures in amorphous and crystalline silicates, Nature (London) 328, 147–149 (1987)Google Scholar
  161. 14.161.
    R. J. Koestler, D. R. Houghton, B. Flannigan, H. W. Rossmore: International Biodeterioration Special Issue: Biodeterioration of Cultural Property (Elsevier, Barking 1991) p. 340 ; including a bibliography by R. J. Koestler and J. VedralGoogle Scholar
  162. 14.162.
    C. Saiz-Jimenez (ed): Molecular Biology and Cultural Heritage (Swets & Zeitlinger, Lisse 2003) p. 278Google Scholar
  163. 14.163.
    N. Valentin, M. Lidstrom, F. Preusser: Microbial control by low oxygen and low relative humidity environment, Studies Conserv. 35, 222–230 (1990)Google Scholar
  164. 14.164.
    J. Pochon, P. Tardieux: Techniques d'analyse de microbiologie du Sol (Ed. La Tourelle, St. Mandé 1962) p. 104Google Scholar
  165. 14.165.
    J. M. Van Der Molen, J. Garty, B. W. Aardema, W. E. Krumbein: Growth control of algae and Cyanobacteria on historical monuments by a mobile UV unit (MUVU), Studies Conserv. 25, 71–77 (1980)Google Scholar
  166. 14.166.
    G. Caneva, O. Salvadori: Biodeterioration of stone. In: Studies and Documents on the Cultural Heritage. The Deterioration and Conservation of Stone (UNESCO, Venezia 1987) pp. 182-233Google Scholar
  167. 14.167.
    A. Downey: The use of biocides in paint preservation. In: Handbook of Biocide and Preservative Use (Blackie Academic, London 1995)Google Scholar
  168. 14.168.
    W. Paulus: Directory of Microbicides for the Protection of Materials. A Handbook (Kluwer Academic, Dordrecht 2005)Google Scholar
  169. 14.169.
    B. Flanningan, E. M. McCabe et al.: Allergenic and toxigenic micro-organisms in houses. In: Pathogens in the Environment, ed. by B. Austin (Blackwell, Oxford 1991)Google Scholar
  170. 14.170.
    G. T. Hill, N. A. Mitkowski, L. Aldrich-Wolfe, L. R. Emele, D. D. Jurkonie, A. Ficke, S. Maldonado-Ramirez, S. T. Lynch, E. B. Nelson: Methods for assessing the composition and deversity of soil microbial communities, Appl. Soil Ecol. 15, 25–36 (2000)Google Scholar
  171. 14.171.
    M. Viaud, A. Pasquier, Y. Brygoo: Diversity of soil fungi studied by PCR-RFLP of ITS, Mycol. Res. 104, 1027–1032 (2000)Google Scholar
  172. 14.172.
    J. W. Lengeler, G. Drews, H. G. Schlegel (eds): Biology of the Prokaryotes (Thieme, Stuttgart 1999) pp. 695–700Google Scholar
  173. 14.173.
    O. Schmidt, U. Moreth: Identification of the dry rot fungus, Serpula lacrymans, and the wild Merulius, S. himantioides, by amplified ribosomal DNA restriction analysis (ARDRA), Holzforsch. 53, 123–128 (1999)Google Scholar
  174. 14.174.
    J. Jellison, C. Jasalavich: A review of selected methods for the detection of degradative fungi, Int. Biodeter. Biodegr. 46, 241–244 (2000)Google Scholar
  175. 14.175.
    K. Winkowski: Efficacy of in can preservatives, Eur. Coating J. 1-2, 87–90 (2001)Google Scholar
  176. 14.176.
    B. Schmidt et al.: Documents of the Project Sub-Group on Preservation of Tinter Pastes (International Biodeterioration Research Group, 2005)Google Scholar
  177. 14.177.
    P. D. Askew: Antibacterial Coatings: Fact or Fiction?, Proc. of Coatings, Compliance, Community and Care, PRA International Symposium 18, Brussels, Belgium Nov. 2001Google Scholar
  178. 14.178.
    P. D. Askew: Antimicrobial coatings: A review, Coatings Rev. (2003)Google Scholar
  179. 14.179.
    P. D. Askew: Hygienic coatings – Defining the terms and supporting the claims, Proc. of the Third Global Conference on Hygienic Coatings and Surfaces, Paris, France March 2005Google Scholar
  180. 14.180.
    Europena Community: Doc-Biocides-2002/04-Rev3 Guidance document agreed between the Commission services and the competent authorities of the Member States for the Biocidal Products Directive 98/8/EC – Guidance Notes on Treated Articles (2004)Google Scholar
  181. 14.181.
    W. Hewitt, S. Vincent: Theory and Practice of Microbiological Assay (Academic, New York 1989)Google Scholar
  182. 14.182.
    JIS: Antimicrobial products – Test for antimicrobial activity and efficacy, Jpn. Ind. Standard JIS Z 2801: 2000 (E) (2000)Google Scholar
  183. 14.183.
    S. McEldowney, M. Fletcher: The effect of temperature and relative humidity on the survival of bacteria attached to dry solid surfaces, Lett. Appl. Microbiol. 7, 83–86 (1988)Google Scholar
  184. 14.184.
    A. Jawad, H. Seifert, A. M. Snelling, J. Heritage, P. M. Hawkey: Survival of Acinetobacter baumannii on dry surfaces: Comparison of outbreak and sporadic isolates, J. Clin. Microbiol. 36, 1938–1941 (1998)Google Scholar
  185. 14.185.
    L. Boulangé-Petermann, E. Robine, S. Ritoux, B. Cromières: Hygienic assessment of polymeric coatings by physico-chemical and microbiological approaches, J. Adhesion Sci. Tech. 18(2), 213–225 (2004)Google Scholar
  186. 14.186.
    S. K. Haack, H. Garchow, D. A. Odelson, L. J. Forney, M. J. Klug: Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities, Appl. Environ. Microbiol. 60, 2483–2493 (1994)Google Scholar
  187. 14.187.
    A. Konopka, L. Oliver, R. F. Turco Jr.: The use of carbon substrate utilization patterns in environmental and ecological microbiology, Microb. Ecol. 3(5), 103–115 (1998)Google Scholar
  188. 14.189.
    T. J. White, T. Bruns, S. Lee, J. Taylor: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols, ed. by M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. J. White (Academic, San Diego 1990) pp. 315–322Google Scholar
  189. 14.190.
    M. Gardes, T. D. Bruns: ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts, Mol. Ecol. 2, 113–118 (1993)Google Scholar
  190. 14.188.
    K. Göller, D. Rudolph: The need for unequivocally defined reference fungi – genomic variation in two strains named as Coniophora puteana BAM Ebw. 15, Holzforsch. 57, 456–458 (2003)Google Scholar
  191. 14.191.
    B. D. Hames, S. J. Higgings (eds): Gene Probes 1. A Practical Approach (Oxford Univ. Press, Oxford 1995)Google Scholar
  192. 14.192.
    R. Amann, W. Ludwig: Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology, FEMS Microbiol. Rev. 24, 555–565 (2000)Google Scholar
  193. 14.193.
    M. T. Suzuki, S. J. Giovanni: Bias caused by template annealing in the amplification mixtures of 16S rRNA genes by PCR, Appl. Environ. Microbiol. 62, 625–630 (1996)Google Scholar
  194. 14.194.
    F. van Winzingerode, U. B. Gobel, E. Stackebrandt: Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis, FEMS Microbiol. Rev. 21, 213–229 (1997)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Division IV.1 Biology in Materials Protection and Environmental IssuesFederal Institute for Materials Research and Testing (BAM)BerlinGermany
  2. 2.IMSL, Industrial Microbiological Services LimitedHartley WintneyUK
  3. 3.Geomicrobiology, ICBMCarl von Ossietzky Universität OldenburgOldenburgGermany
  4. 4.BerlinGermany
  5. 5.Division IV.1Federal Institute for Materials Research and Testing (BAM)BerlinGermany
  6. 6.Material EcologyBIOGEMAEdewechtGermany
  7. 7.TU-BCEGesellschaft für Biotechnologische Forschung mbHBraunschweigGermany
  8. 8.Division IV.1, Materials and EnvironmentFederal Institute for Materials Research and Testing (BAM)BerlinGermany
  9. 9.Environmental Compatibility of MaterialsFederal Institute for Materials Research and Testing (BAM)BerlinGermany
  10. 10.Laboratory for Corrosion ProtectionIserlohn University of Applied SciencesIserlohnGermany
  11. 11.Division IV.1 Materials and EnvironmentFederal Institute for Materials Research and Testing (BAM)BerlinGermany

Personalised recommendations