Pressure Measurement Systems

Reference work entry
Part of the Springer Handbooks book series (SHB)


Measurements of the steady pressure in a fluid flow may be required to determine other thermodynamic properties, to determine forces on a body due to the pressure distribution over it, or in order to determine the dynamic head and flow velocity (for further details on the latter see Sect. 5.1. Pressure is a scalar representation of molecular activity, a measure of the nondirectional molecular motions. Thus it must, by definition, be measured by a device at rest relative to the flow. Whilst the common practice in the fluid mechanics community is to denote the pressure as static (as opposed to the coordinate-dependent total pressure, Sect. 3.1), this terminology introduces a fundamental redundancy.

In practice, pressure is commonly measured both at walls and in the freestream using the types of measurement device shown in Fig. 4.1 connected to a transducer of suitable sensitivity and range. The orifice of a small wall tapping represents a simple way to obtain the pressure impressed on the wall by the external flow. So-called static pressure tubes approximate the local fluid pressure in the freestream if the disturbance presented to the flow can either be accounted for or is not large to begin with. However this can only ever be strictly true for steady laminar flow due to the normal velocity component introduced when a flow becomes turbulent. Measurement of freestream pressure is one of the hardest challenges in fluid mechanics.
Fig. 4.1

Determination of steady pressure: (a) wall tapping; (b) static tube

This chapter addresses measurement of pressure using wall tappings (Sect. 4.1) and static pressure tubes (Sect. 4.2), and especially errors due to the intrusive flow presence of real, finite-sized devices and calibrations to correct for these. Bryer and Pankhurst [4.1] and Chue [4.2] provided seminal monographs on the general topic of pressure probes in 1971 and 1975, respectively, which give detailed descriptions of measurement devices, coverage of the background to the various corrections and a survey of older data. The topic is covered here more concisely, with a view to

practical use by the engineer, and with reference to modern literature. The reader is referred to Bryer and Pankhurst [4.1] and Chue [4.2] for further details on most sections.

In more recent years a further method for obtaining pressure on the surface of a wind tunnel model has been developed, based on pressure sensitive paints (PSP). The introduction of PSP provides a method to measure the pressure on the surface of a model directly without the transducers and tubing associated with conventional means. A paint, the luminescence of which is dependent on air pressure, is applied to the surface of a wind tunnel model and the pressure distribution is obtained from the images produced by proper illumination. In Sect. 4.4 the basics of PSP are discussed and further subsections address in detail different paints, paint application procedures, imaging systems and image processing. In discussing the achievable accuracy of PSP techniques, both the spatial and temporal resolution is examined. The thermal sensitivity of the paint dye is introduced and this is closely linked to temperature-sensitive paints (TSP), as discussed in Chap. 7, Sect. 7.4.


Wind Tunnel Thermal Error Pressure Error Pressure Sensitive Paint Static Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



analog-to-digital converter


charge-coupled device


computational fluid dynamic


complementary metal oxide semiconductor


German Aerospace Center


European transonic wind tunnel


light-emitting diodes


National Advisory Committee for Aeronautics


pressure-sensitive paint


temperature-sensitive paint




  1. 4.1.
    D.W. Bryer, R.C. Pankhurst: Pressure Probe Methods for Determining Wind Speed and Flow Direction, Technical Report (Her Majestyʼs Stationery Office, London 1971), .Google Scholar
  2. 4.2.
    S.H. Chue: Pressure probes for fluid measurement, Prog. Aerosp. Sci. 16, 147–223 (1975)CrossRefGoogle Scholar
  3. 4.3.
    A. Thom, C.J. Appelt: The pressure in a two-dimensional static hole at low Reynolds numbers, Rep. Memor. Aero. Res. Council 3090 (1957)Google Scholar
  4. 4.4.
    R.E. Rayle Jr.: An investigation of the influence of orifice geometry on static pressure measurements, MS Thesis (M.I.T., Boston 1949)Google Scholar
  5. 4.5.
    C.M. Allen, L.J. Hooper: Piezometer investigation, ASME Trans. 54(HYD-54-1) (1932)Google Scholar
  6. 4.6.
    C. Ducruet, A. Dyment: The pressure-hole problem, J. Fluid Mech. 142, 251–267 (1984)CrossRefGoogle Scholar
  7. 4.7.
    J.L. Livesey, J.D. Jackson, C.J. Southern: The static-hole error problem: an experimental investigation of errors for holes of varying diameters and depths, Aircraft Eng. 34, 43–47 (1962)CrossRefGoogle Scholar
  8. 4.8.
    R. Shaw: The influence of hole dimensions on static pressure measurements, J. Fluid Mech. 7, 550–564 (1960)CrossRefzbMATHGoogle Scholar
  9. 4.9.
    A. Miyadzu: Über den Einfluss der Bohrungen auf die Druckanzeige, Ingen.-Arch. 7, 35–41 (1936), in GermanCrossRefGoogle Scholar
  10. 4.10.
    A.K. Ray: On the effect of orifice size on static pressure reading at different Reynolds numbers, Ing.-Arch. 24(3) (1956), , Engl. transl. Aero. Res. Counc. unclassified `A3ʼ report 18829, FM 2479, EA 527, TP 498Google Scholar
  11. 4.11.
    R.E. Franklin, J.M. Wallace: Absolute measurements of static-hole error using flush transducers, J. Fluid Mech. 42, 33–48 (1970)CrossRefGoogle Scholar
  12. 4.12.
    G. Fuhrmann: Theoretische und experimentelle Untersuchungen an Ballonmodellen, Ph.D. Thesis (Göttingen University, Göttingen 1912)Google Scholar
  13. 4.13.
    B.J. McKeon, A.J. Smits: Static pressure correction in high Reynolds number fully developed turbulent pipe flow, Meas. Sci. Tech. 13, 1608–1614 (2002)CrossRefGoogle Scholar
  14. 4.14.
    W. J. Rainbird: Errors in measurement of mean static pressure of a moving fluid due to pressure holes. In: Quart. Bull. Div. Mech. Eng. Nat. Aero. Est. DME/NAE #3, (Nat. Res. Council, Ottawa, 1967)Google Scholar
  15. 4.15.
    E.B. Plentovich: Status of orifice induced pressure error studies, AIAA 84-0245 (1984)Google Scholar
  16. 4.16.
    C. Ducruet: A method for correcting wall pressure measurements in subsonic compressible flow, J. Fluids Eng. 113, 256–260 (1991)CrossRefGoogle Scholar
  17. 4.17.
    M.V. Zagarola: Mean-flow scaling of turbulent pipe flow, Ph.D. Thesis (Princeton University, Princeton 1996)Google Scholar
  18. 4.18.
    V.A. Sandborn: Experimental evaluation of momentum terms in turbulent pipe flow, Tech. Note, Vol. 3266 (NACA Lewis Flight Prop. Lab., Cleveland 1955)Google Scholar
  19. 4.19.
    G.K. Patterson, W.J. Ewbank, V.A. Sandborn: Radial pressure gradient in turbulent pipe flow, Phys. Fluids 10 (1967)Google Scholar
  20. 4.20.
    T. Christiansen, P. Bradshaw: Effect of turbulence on pressure probes, J. Phys. E 14, 992–997 (1981)CrossRefGoogle Scholar
  21. 4.22.
    H.W. Liepmann, A. Roshko: Elements of Gas Dynamics (Wiley, New York 1957)Google Scholar
  22. 4.21.
    A. Pope, J.J. Harper: Low-speed Wind Tunnel Testing (Wiley, New York 1966)Google Scholar
  23. 4.23.
    S. Goldstein: A note on the measurement of total head and static pressure in a turbulent stream, Proc. Roy. Soc. London A 155(886), 570–575 (1936)CrossRefGoogle Scholar
  24. 4.24.
    A. Fage: On the static pressure in fully-developed turbulent flows, Proc. Roy. Soc. A 155(886), 576–596 (1936)CrossRefGoogle Scholar
  25. 4.25.
    P. Bradshaw, D.G. Goodman: The effect of turbulence on static-pressure tubes, Rep. Memor Aero. Res. Council 3527 (1968)Google Scholar
  26. 4.26.
    B.L. Welsh, P.R. Ashill: Pressure Measurement Techniques in Use at the Royal Aerospace Establishment, von Karman Institute Lecture Series (1989)Google Scholar
  27. 4.27.
    R.H. Engler, K. Hartmann, B. Schulze: A new optical pressure measurement system (OPMS) ICIASFʼ 91 Record, Rockville (1991) pp. 163–170Google Scholar
  28. 4.28.
    O.S. Wolfbeis, M.J.P. Leiner: Recent progress in optical oxygen sensing, SPIE Proc. 906, 42–48 (1988)Google Scholar
  29. 4.29.
    A. Baron, M. Gouterman: 100 μ s images of unsteady surface flow using fast responding pressure sensitive paint, Proc. 7th Int. Symp. Flow Visualization, Seattle (1995)Google Scholar
  30. 4.30.
    D. Lubbers, N. Opitz: Quantitative fluorescence photometry with biological fluids and gases, Adv. Exp. Med. Bin. 75, 441–448 (1976)Google Scholar
  31. 4.31.
    M. P. Gouterman, I. L. Kavandi, J. Gallery, J. B. Callis: Surface pressure measurement by oxygen quenching of luminescence, European Patent Application 0 472 243 A2, August (1991)Google Scholar
  32. 4.32.
    K. Asai, H. Kanda, J.P. Sullivan: Boundary layer transition detection in a cryogenic wind tunnel using luminescent paint, J. Aircraft 34(I), 34–42 (1997)CrossRefGoogle Scholar
  33. 4.33.
    J. H. Bell, B. G. McLachlan: Image registration for luminescent paint sensors, ALAA J. (1993) paper 93–0178Google Scholar
  34. 4.34.
    A. Orlov, V. Radchenko, N. Sadovskii, I. Truyanovsky: Luminescent pressure sensitive composition, European Patent Application 0 558 771 Al, March (1992)Google Scholar
  35. 4.35.
    Y. Mebarki, M. C. Merienne, Y. Le Sant: Application dʼun revetement luminescent a deux composes pour la mesure de lapression et de la temperature, Societe Francais des Thermiciens (SFT), Journee dʼEtudes (1997)Google Scholar
  36. 4.36.
    J.R. Lakowicz, et al.: Fluorescent lifetime imaging, Anal. Biochem. 202, 316–330 (1992)CrossRefGoogle Scholar
  37. 4.37.
    C. G. Morgan: Measurement of luminescence, US Patent 5,459,323 (1995)Google Scholar
  38. 4.38.
    D. M. Oglesby, C. K. Puram, B. T. Upchurch: Optimisation of measurements with pressure sensitive paints, NASA TM (4695), June (1995)Google Scholar
  39. 4.39.
    A. P. Bukov, et al.: Application of luminescent quenching for pressure field measurements on the model surface, Proc. Wind Tunnels Wind Tunnel Test Tech. Conf., Royal Aeronautical Society, Southampton (1992)Google Scholar
  40. 4.40.
    T. Araki, H. Misawa: Light emitting diode–based nanosecond ultraviolet light source for fluorescence lifetime measurements, Rev. Sci. Inst. 66, 2 (1995)Google Scholar
  41. 4.41.
    Y. Le Sant, M–C. Merienne: An image resection method applied to mapping techniques, IEEE ICIASF Record Wright–Patterson AFB, 46.1–46.8 (1995)Google Scholar
  42. 4.42.
    J. W. Holmes: Fluorescent lifetime imaging for pressure sensitive paint, GARTEUR AD(AG–21) Final Report, HWA/CN/RD/98006/1 (1998)Google Scholar
  43. 4.43.
    R.M. Dowgwillo, M.J. Morris, J.F. Donovan, M.E. Benne: Pressure sensitive paint in transonic wind–tunnel testing of the F–15, J. Aircraft 33, 1 (1996)CrossRefGoogle Scholar
  44. 4.44.
    R. M. Dowgwillo, et al.: The application of the pressure sensitive paint technique to high speed wind tunnel testing of a fighter aircraft configuration with complex store loadings, AIAA J. (1994) paper 94–1932Google Scholar
  45. 4.45.
    J. P. Crowder: Flow visualisation in flight testing, AIAA J. 90–1273 5th Biannual Flight Testing Conference (1990)Google Scholar
  46. 4.46.
    R. H. Engler, K. Hartmann, I. Troyanovski, A. Vollan: Description and assessment of a new optical pressure measurement system (OPMS) demonstrated in the high speed wind tunnel of DLR in Göttingen, DLR-FB 92-24, 1–66 (1992)Google Scholar
  47. 4.47.
    M.C. Merienne, Y. Mebarki: Contribution to the study of wing–nacelle interaction, Proc. CEAS Wind Tunnels and Wind Tunnel Test Tech. Conf., Cambridge (1997)Google Scholar
  48. 4.48.
    M. Kammeyer, C. Kelble, J. Donovan, M. Benne, T. Kihlken: Recent improvements in pressure–sensitive paint measurement accuracy at, Boeing, AIAA 2002–2907, 22nd AIAA Aerodynamic Measurement Technology and Ground Test Conference, St. Louis (2002)Google Scholar
  49. 4.49.
    M. Kammeyer, J. Donovan, C. Kelble, M. Benne, T. Kifilken, J. Felter: Accuracy assessment of a pressure–sensitive paint measurement system, AIAA 2002–0530, 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno (2002)Google Scholar
  50. 4.50.
    T. Gadella, T. Jovin, R. Cegg: Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale, J. Biophys. Chem. 48, 221–239 (1993)CrossRefGoogle Scholar
  51. 4.51.
    C. Klein: Einsatz einer druckempfindlichen Beschichtung (PSP) zur Bestimmung des momentanen Druckfeldes von Modellen im Windkanal. Dissertation (University Göttingen), DLR-Forschungsbericht 97–55 (1997)Google Scholar
  52. 4.52.
    R.H. Engler, M.C. Merienne, C. Klein, Y. Le Sant: Application of PSP in low speed flows, Aerosp. Sci. Technol. 6, 313–322 (2002), DLR Göttingen and ONERA Meudon (2002)CrossRefGoogle Scholar
  53. 4.53.
    Y. Iijima, Y. Egami, A. Nishizawa, K. Asai, U. Fey, R. H. Engler: Optimization of temperature-sensitive paint formulation for large-scale cryogenic wind tunnels, 20th ICIASFʼ03 Record, Göttingen, (2003) 70–76Google Scholar
  54. 4.54.
    H. Sakaue, J.W. Gregory, J.P. Sullivan, S. Raghu: Porous pressure sensitive paint for characterizing unsteady flowfields, AIAA J. 40, 1094–1098 (2002)CrossRefGoogle Scholar
  55. 4.55.
    K. Asai, H. Kanda, C. T. Cunningham, R. Erausquin, J. P. Sullivan: Surface pressure measurement in a cryogenic wind tunnel by using luminescent coating, International Congress on Instrumentation in Aerospace Simulation Facilities `97 Record (1997) pp. 105–114Google Scholar
  56. 4.56.
    Y. Amao, K. Asai, I. Okura: Photoluminescent oxygen sensing using palladium tetrakis(4-carboxyphenyl)porphyrin self-assembled membrane on alumina, Anal. Commun. 36, 170–180 (1999)Google Scholar
  57. 4.57.
    M. Kameda, N. Tezuka, T. Hangai, K. Asai, K. Nakakita, Y. Amao: Adsorptive pressure-sensitive coatings on porous anodized aluminium, Meas. Sci. Technol. 15, 489–500 (2004)CrossRefGoogle Scholar
  58. 4.58.
    V. Mosharov, V. Radchenko, A. Orlov: Binary pressure paint: A lot of problems, Presented at the 7th Annual Pressure Sensitive Paint Workshop, Purdue Univeristy, West Lafayette (1999)Google Scholar
  59. 4.59.
    R. H. Engler: Development of pressure sensitive paint, Presented at the 7th Annual Pressure SensitivePaint Workshop, Purdue Univeristy, West Lafayette (1999)Google Scholar
  60. 4.60.
    J. Crafton, S. Fonov, E. Jones, L. Goss, C. Carter: Bi-luminophore pressure-sensitive paint development, 8th Annual Pressure Sensitive Paint Workshop, NASA Langley Research Center (2000)Google Scholar
  61. 4.61.
    M. Kameda, T. Tabei, K. Nakakita, H. Sakaue, K. Asai: Image measurements of unsteady pressure fluctuation by a pressure-sensitive coating on porous anodized aluminum, Meas. Sci. Technol. (2005)Google Scholar
  62. 4.62.
    J. W. Gregory: Porous pressure-sensitive paint for measurement of unsteady pressures in turbomachinery, Proc. 42nd AIAA Aerospace Sci. Meeting Exhibit, AIAA-2004 294 (2004)Google Scholar
  63. 4.63.
    Y. Sakamura, M. Matsumoto, T. Suzuki: High frame-rate imaging of surface pressure distribution using a porous pressure-sensitive paint, Meas. Sci. Technol. 16, 759–765 (2005)CrossRefGoogle Scholar
  64. 4.64.
    T. Kawakami, T. Tabei, M. Kameda, K. Nakakita, K. Asai: Unsteady pressure-field measurements by a fast-responding PSP on porous anodized aluminum, Proc. 11th Int. Symp. Flow Visualization (2004) Paper No. 217Google Scholar
  65. 4.65.
    H. Sakaue, T. Tabei, M. Kameda: Hydrophobic monolayer coating on anodized aluminum pressure-sensitive paint, Sens. Actuat. (2005) (in preparation)Google Scholar
  66. 4.66.
    H. Masuda, K. Fukuda: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268, 1466–1468 (1995)CrossRefGoogle Scholar
  67. 4.67.
    H. Masuda, F. Hasegawa, S. Ono: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc. 144, L127–L130 (1997)CrossRefGoogle Scholar
  68. 4.68.
    H. Masuda, K. Yada, A. Osaka: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution, Jpn. J. Appl. Phys. 37, L1340–L1342 (1998)CrossRefGoogle Scholar
  69. 4.69.
    M. Saito, Y. Shiga, M. Miyagi, K. Wada, S. Ono: Optical transmittance of anodically oxidized aluminum alloy, Jpn. J. Appl. Phys. 34, 3134–3138 (1995)CrossRefGoogle Scholar
  70. 4.70.
    T. Hangai, M. Kameda, K. Nakakita, K. Asai: Time response characteristics of pyrene-based pressure-sensitive coatings on anodic porous alumina, Proc. 10th Int. Symp. Flow Visualization (2002) Paper No. F0269Google Scholar
  71. 4.71.
    I. Gursul: Recent development in delta wing aerodynamics, Aeronautical J. 108, 437–452 (2004)Google Scholar
  72. 4.72.
    D.G. Mabey: Some aspects of aircraft dynamic loads due to flow separation, Prog. Aerospace Sci. 26, 115–151 (1989)CrossRefGoogle Scholar
  73. 4.73.
    N. Chandrasekharan, M. Hammer, L. Kelly, L. A. Mattes: A paradigm shift for pressure sensitive paints, The 8th Pressure Sensitive Paint Workshop, NASA Langley Research Center (2000)Google Scholar
  74. 4.74.
    Y. Sakamura, Y. Kidoh, T. Suzuki, M. Matsumoto: Time resolved pressure measurements in shock-induced flows usinga pressure-sensitive paint, Proc. 23rd Int. Symp. Shock Waves, Fort Worth (2001) pp. 456–462Google Scholar
  75. 4.75.
    R. Crites, M. Benne: Emerging technology for pressure measurements in wind tunnels – pressure sensitive paint, AIAA 95–0106, Presented at the 33rd Aerospace Sciences Meeting, Reno (1995)Google Scholar
  76. 4.76.
    J. H. Bell: Accuracy limitation of lifetime-based pressure sensitive paint measurements, 19th Int. Congr. Instrum. Aerospace Simulation Facilities, Cleveland (2001)Google Scholar
  77. 4.77.
    L. P. Goss, D. D. Trump, B. Sarka, L. N. Lydick, W. M. Baker: Multi-dimensional time-resolved pressure-sensitive-paint techniques: A numerical and experimental comparison, AIAA-2000–0832, Presented at the 38th Aerospace Sciences Meeting, Reno (2000)Google Scholar
  78. 4.78.
    T. Liu, S. D. Torgerson, J. P. Sullivan, R. Johnston, S. Fleeter: Rotor blade pressure measurement in a high speed axial compressor using pressure and temperature sensitive paints, AIAA-97–0162, Presented at the 35th Aerospace Sciences Meeting, Reno (1997)Google Scholar
  79. 4.79.
    A. G. Davies: Temperature compensated PSP measurements on a 2D wing in transonic flow, Presented at the 6th Pressure-Sensitive Paint Workshop, Seattle (1998)Google Scholar
  80. 4.80.
    J.W. Holmes: Analysis of radiometric, lifetime and fluorescent lifetime imaging for pressure sensitive paint, Aeronaut. J. 2306, 189–94 (1998)Google Scholar
  81. 4.81.
    W. M. Baker: Recent experiences with pressure sensitive paint testing AIAA-2001–0306, Presented at the 39th Aerospace Sciences Meeting, Reno (2001)Google Scholar
  82. 4.82.
    M. E. Sellers: Application of pressure sensitive paint for determining aerodynamic loads on a scale model of the F-16C AIAA-2000–2528, Presented at the 21st Aerodynamic Measurement Technology and Ground Testing Conference, Denver (2000)Google Scholar
  83. 4.83.
    W.M. Ruyten: Self-Illumination Calibration Technique for Luminescent Paint measurements, Rev. Sci. Instrum. 68(7), 3452–57 (1997)CrossRefGoogle Scholar
  84. 4.84.
    S. Ponomarov, M. Gouterman: Ideality of Pressure-Sensitive Paint, I. Platinum Tetra(penta-fluorophenyl)porphine in Fluoroacrylic Polymer, J. Appl. Polym. Sci. 77(8), 2795 (2000)Google Scholar
  85. 4.85.
    M. Lyonnet, B. Deleglise, G. Grenat, A. Bykov, V. Mosharov: The two-component PSP investigation on a civil aircraft model in S2MA wind tunnel, AGARD Conf. Proc. CP-601: Adv. Aerodyn. Meas. Technol., 81st Fluid Dyn. Panel Sym, Seattle, pp 30–1 – 30–8. Neuilly -sur-Seine, France: AGARD (1998)Google Scholar
  86. 4.86.
    V. Mosharov, V. Radchenko, S. Fonov: Luminescent pressure sensors in aerodynamic experiment, Moscow: Cent. Aerohydrodyn. Inst. (TsAGI). CWA Int. Corp. (1997) p. 151Google Scholar
  87. 4.87.
    T. Liu, B.T. Campbell, S.P. Burns, J.P. Sullivan: Temperature- and pressure-sensitive luminescent paints in aerodynamics, Appl. Mech. Rev. 50(4), 227–246 (1997)CrossRefGoogle Scholar
  88. 4.88.
    K. Nakakita, M. Kurita, K. Mitsuo: Development of the pressure-sensitive paint measurement for large wind tunnels at japan aerospace exploration agency, 24th Congress of the International Council of the Aeronautical Sciences, Yokohama (2004) ICAS2004–3.2.2Google Scholar
  89. 4.89.
    J. H. Bell: Applications of pressure sensitive paint to testing at very low flow speeds, 42nd AIAA. Aerospace Sciences Meeting & Exhibit, Reno (2004) AIAA-2004–0878Google Scholar
  90. 4.90.
    K. Mitsuo, Y. Iijima, A. Nishizawa, K. Nakakita, K. Asai: Application of PSP. Measurement to low speed wind tunnel testing using an automobile model, Proc. MOSAIC Workshop, Tokyo (2003) pp.70–71Google Scholar
  91. 4.91.
    Y. Mébarki, K. R. Cooper: Aerodynamic testing of a generic automotive model with pressure sensitive paint, 10th Int. Symp. Flow Visualization, Kyoto (2002) ISFV-2002-F0120Google Scholar
  92. 4.92.
    Y. Le Sant, F. Bouvier, M. C Merienne, J. L Peron: Low speed tests using PSP at ONERA, 39th AIAA Aerospace Sciences Meeting& Exhibit, Reno (2001) AIAA 2001–0555Google Scholar
  93. 4.93.
    Y. Shimbo, R. D. Mehta, B. J. Cantwell: Vortical flow field investigation using the pressure sensitive paint technique at low speed, 35th AIAA Aerospace Science Meeting, Reno (1997) AIAA 97–0388Google Scholar
  94. 4.94.
    Y. Shimbo, N. Komatsu, K. Asai: Pressure sensitive paint application at large production wind tunnels, 22nd International Congress of Aeronautical Science, Harrogate (2000) ICAS2000–3.3.3Google Scholar
  95. 4.95.
    C. Y. Huang, H. Sakaue, J. W. Gregory, J. P. Sullivan: Molecular sensors for MEMS, 40th Aerospace Sciences Meeting & Exhibit, Reno (2002) AIAA2002–0256Google Scholar
  96. 4.96.
    C. Y Huang, J. P Sullivan: Flow visualization and pressure measurement in micronozzles, 11th Int. Symp. Flow Visualization, Univ. of Notre Dome (2004)Google Scholar
  97. 4.97.
    A. Davies, D. Bedwell, M. Dunleavy, N. Brownjohn: Pressure sensitive paint limitations and solutions, Proc. 17th International Congress on Instrumentation in Aerospace Simulation Facilities, Pacific Grove (1997) pp.11–21Google Scholar
  98. 4.98.
    M. Hamner, B. Campbell, T. Liu, J. P Sullivan: A scanning laser system for temperature and pressure sensitive paint, AIAA J. (1994) 94–0728Google Scholar
  99. 4.99.
    V.O. Stern, M. Volmer: Über die Abklingungszeit der Fluoreszenz, Phys. Z. 20, 183 (1919), in GermanGoogle Scholar
  100. 4.100.
    J.I. Peterson, R.V. Fitzgerald: Rev. Sci. Instrum. 51, 670 (1980)CrossRefGoogle Scholar
  101. 4.101.
    M.M. Ardasheva, L.B. Nevskii, G.E. Pervushin: Measurement of pressure distribution by means of indicator coatings, J. Appl. Mech. Techn. Phys. 2, 469–474 (1985)Google Scholar
  102. 4.110.
    F. Rodriguez: Principles of Polymer Systems, 2nd edn. (McGraw-Hill, New York 1987)Google Scholar
  103. 4.109.
    G. M. Zharkova, A. I. Maksinov, A. A. Pavlov, V. M. Khachaturyan: Pressure visualization on aerodynamic surface by the method of luminescent coating, Proc. 6th Int. Symp. on Flow Visualization Yokohama (Springer, Heidelberg 1992)Google Scholar
  104. 4.111.
    H. Sakaue, J.P. Sullivan: Time response of anodized aluminum pressure-sensitive paint, AIAA J. 39, 1944–1949 (2001)CrossRefGoogle Scholar
  105. 4.112.
    N.A. Winslow, B.F. Carroll, A.J. Kurdila: Model development and analysis of the dynamics of pressure-sensitive paints, AIAA J. 39, 660–666 (2001)CrossRefGoogle Scholar
  106. 4.113.
    R. H. Engler: Pressure sensitive paints in quantitative wind tunnel studies, Proc. 11th Int. Symp. Flow Visualization, University of Notre Dame, South Bend (2004)Google Scholar
  107. 4.114.
    T. Liu, J.P. Sullivan: Pressure and Temperature Sensitive Paint (Springer, Heidelberg 2004)Google Scholar
  108. 4.115.
    R. H Engler: PSP and TSP for different Wind Tunnels and Flow Facilities, The 8th International Symposyium on Fluid Control, Measurement and Vizualization, Chengdu (2005)Google Scholar
  109. 4.116.
    K.R. Schanze, B.F. Carroll, S. Korotkevitch, M. Morris: Temperature dependence of pressure sensitive paints, AIAA J. 35(2), 306–310 (1997)CrossRefGoogle Scholar
  110. 4.108.
    S. D. Schwab, R. M. Levy: Pressure sensitive paint formulations and methods, US Patent 5,359,887, Nov. 1 (1994)Google Scholar
  111. 4.117.
    J. Kavandi: Luminescent barometry in wind tunnels, Rev. Sci. Instrum. 61, 11 (1990)CrossRefGoogle Scholar
  112. 4.118.
    B. G. McLachlan, J. H. Bell: Flight testing of a luminescent surface pressure sensor, NASA Tech. Memorandum 103970 (1992)Google Scholar
  113. 4.119.
    U. Henne: Application if the PSP technique in low speed range wind tunnels, STAB Workshop, Göttingen (2005)Google Scholar
  114. 4.120.
    C. Parker: Photoluminescence of Solutions (Elsevier, Amsterdam 1968), Chapter 1CGoogle Scholar
  115. 4.121.
    N.J. Turro: Modern Molecular Photochemistry (Univ. Science Books, New York 1991)Google Scholar
  116. 4.122.
    O. Wolfbeis: Fibre–optical fluor sensors in analytical and clinical chemistry, Chem. Anal. 77, 129 (1988)Google Scholar
  117. 4.123.
    A. Vollan, L. Alati: A new optical pressure measurement system, 14th ICIASF Congress (1991) p. 3Google Scholar
  118. 4.124.
    B. Ranby, J.F. Rabek: Singlet Oxygen: Reactions with Organic Compounds and Polymers (Wiley, New York 1978)Google Scholar
  119. 4.125.
    A. Juris, V. Balzani, F. Barigelld: Ru (II )polypyridine complexes: Photophysics, photochemistry, electrochemistry, and chemo luminescence, Coord. Chem. Rev. 84, 85277 (1988)CrossRefGoogle Scholar
  120. 4.126.
    F. Lythe: Die luminescence of Tris (Bipyridyl) ruthenium (11) chloride, J. Am. Chem. Soc. 91(2), 131–137 (1969)Google Scholar
  121. 4.127.
    S. Pauly: Permeability and diffusion data. In: Polymer Handbook, ed. by J. Brandrup, E.H. Immergut (Wiley Interscience, New York 1989)Google Scholar
  122. 4.128.
    J.R. Welty: Engineering Heat Transfer (Whiley, New York 1974) pp. 102–114Google Scholar
  123. 4.129.
    A. Bukov, V. Pesetsky: Optical surface pressure measurements: Accuracy and application field evaluation, Proc. AGARD CP535, Brussels, 73rd Fluid Dynamics Panel, October (1993) Paper 24Google Scholar
  124. 4.130.
    E.U. Condon, H. Odishaw: Handbook of Physics (McGraw Hill, New York 1958)Google Scholar
  125. 4.131.
    B. Carroll, A. Winslow, J. Abbitt, K. Schanz, M. Morris: Pressure sensitive paint application to a sinusoidal pressure fluctuation, IEEE ICIASF Record Wright–Patterson AFB (1995) 35/1–35/6Google Scholar
  126. 4.132.
    R. H. Engler: Further developments of pressure sensitive paints (OPMS) for non flat models in steady transonic flow and unsteady conditions IEEE ICIASF Record Wright–Patterson AFB (1995) 33/1–33/8Google Scholar
  127. 4.133.
    V. Borovoy, A. Bukov, V. Mosharov, et al.: Pressure sensitive paint in shock wind tunnel, IEEE ICIASF Record Wright–Patterson AFB (1995) 34/1–34/4Google Scholar
  128. 4.104.
    W. Holmes: The relevance of pressure sensitive paint to aerodynamic research, J. Fluoresc. 3(3), 179–183 (1994)CrossRefGoogle Scholar
  129. 4.134.
    S. F. Hoemer: Fluid–dynamic drag, Library on Congress Catalog Card Number 64–19666 (1965) chapters 2 and 5Google Scholar
  130. 4.135.
    U. Fey, R. H. Engler Y. Egami, Y. Iijima, K. Asai, U. Jansen, J.Quest: Transition detection by temperature sensitive paint at cryogenic temperatures in the European Transonic Wind Tunnel (ETW), ICIASFʼ03 Record, Göttingen (2003) pp. 77–88Google Scholar
  131. 4.136.
    S. D. Torgerson, T. Liu, J. P. Sullivan: Use of pressure sensitive paints in low speed flows, AIAA–96–2184,19 AIAA Advanced Measurement and Ground Testing Technology Conference (1996)Google Scholar
  132. 4.137.
    K. Jules, M. Carbonaro, S. Zemsch: Application of pressure sensitive paints in hypersonic flows, NASA Tech. Memorandum 106824, February (1995)Google Scholar
  133. 4.138.
    J. W. Grate, M. H. Abrahams: Solubility properties of siloxane polymers for chemical sensors, Pacific Northwest Fibre Optic Sensors Workshop 3–4, SPIE 2574:71–77 (1995)Google Scholar
  134. 4.139.
    K. Goswami, S. Klainer: Fibre optic chemical sensor for the measurement of partial pressure of oxygen, SPIE 990 (1988)Google Scholar
  135. 4.140.
    M. J. Morris, et al.: Aerodynamic applications of pressure sensitive paint, AIAA J. (1992) paper 92–0264Google Scholar
  136. 4.141.
    J. F. Donovan, et al.: Data analysis techniques for pressure–and temperature–sensitive paint, AIAA J. (1993) paper 93–0176Google Scholar
  137. 4.142.
    C. Klein, R. H. Engler: First results using the new DLR PSP system–Intensity and lifetime measurements, 43.1–43.9 Proc. CEAS Wind Tunnels Wind Tunnel Test Tech. Conf. Cambridge (1997)Google Scholar
  138. 4.143.
    A. Draeijer, R. Sanders: Fluorescence lifetime imaging: a new tool in confocal microscopy. In: Handbook of Confocal Microscopy (Plenum, New York 1995)Google Scholar
  139. 4.144.
    A. G. Davies: Recent developments in pressure sensitive paint measurements using the BAe system, 28.1–28.11 Proc. CEAS Wind Tunnels Wind Tunnel Test Techn. Conf. Cambridge (1997)Google Scholar
  140. 4.145.
    S. P. Burns, I. P. Sullivan: The use of pressure sensitive paints on rotating machinery, IEEE ICIASF Record Wright –Patterson AFB (1995) 32.1–32.14Google Scholar
  141. 4.146.
    J. W. Holmes: Analysis of radiometric, lifetime and fluorescent lifetime imaging, J. Roy. Aeronaut. Soc. (1998) Paper 2306Google Scholar
  142. 4.147.
    R. C. Crites: Pressure sensitive paint technique, Measurement Techniques Lecture Series 1993–05, von Karman Institute for Fluid Dynamics (1993)Google Scholar
  143. 4.148.
    S. W. Houck, R. G. Hepp, M. I. Morris, M. E. Benne: Pressure sensitive paint flight test, IEEE Aerospace Applications Conf., Aspen Co 4:241–252 (1996)Google Scholar
  144. 4.149.
    C. A. Fuentes, J. D. Abbitt: Development of a film–based pressure sensitive paint technique, AIAA 96–2933, 32nd AIAA/ASME/SAE/ASEE Joint propulsion conference, Lake Buena Vista, FL (1996)Google Scholar
  145. 4.150.
    R. D. La Belle, S. D. Garvey: Introduction to high performance CCD cameras, IEEE ICIASP Record Wright–Patterson AFB (1995)Google Scholar
  146. 4.151.
    R. H. Engler, U. Fey, U. Henne, C. Klein, W. E. Sachs: Pressure sensitive paints and temperature sensitive paints in quantitative wind tunnel studies, J. Visualization (2004) paper 04–053Google Scholar
  147. 4.152.
    N. Brown, M. E. Benne, M. E. Kammeeyer: Factors influencing camera selection for the boing pressure sensitive paint system, Proc. 42nd AIAA Aerospace Sciences Meeting and Exhibit (2004) AIAA-2004–294Google Scholar
  148. 4.153.
    S. S. Bowen: Comparison of motion estimators for an intensity variant image sequence, SPIE Image and Video Processing H 2182 (1994)Google Scholar
  149. 4.154.
    W.M. Ruyten: Self–illumination calibration technique for luminescent paint measurements, Rev. Sci. Instrum. 68(7), 3452–3457 (1997)CrossRefGoogle Scholar
  150. 4.155.
    Y. Mebarki: Peintures sensibles a lapression: Application en soufflerie aerodynamique, Thesis (University of Lille, Lille 1997)Google Scholar
  151. 4.156.
    M. J. Morris, J. F. Donovan: Application of pressure–and temperature sensitive paints in high speed flows, AIAA J. 94–2231, 25th AIAA Fluid Dynamics Conference (1994)Google Scholar
  152. 4.157.
    B.G. McLachlan, J.H. Bell, H. Park, et al.: Pressure–sensitive paint measurements on a supersonic high–sweep oblique wing model, J. Aircraft 32(2), 470–483 (1995)CrossRefGoogle Scholar
  153. 4.158.
    J. Holmes: Analysis of radiometric, lifetime and fluorescence lifetime imaging, Aeronautical J. 2306, 189–194 (1998)Google Scholar
  154. 4.159.
    L. Goss, D. Trump, B. Sarka, L. Lydick, W. Baker: Multi-dimensional time-resolved pressure-sensitive-paint techniques: A numerical and experimental comparison (2000) AIAA 2000–0832Google Scholar
  155. 4.160.
    L. Coyle, M. Gouterman: Correcting Lifetime Measurements for Temperarure, Sens. Actuat. B 61, 92–99 (1999)CrossRefGoogle Scholar
  156. 4.161.
    J. Hradil, C. Davis, C. Mongey, C. McDonagh, B.D. MacCraith: Temperature-corrected pressure-sensitive paint measurements using a single camera and a dual-lifetime approach, Meas. Sci. Technol. 13, 1552–1557 (2002)CrossRefGoogle Scholar
  157. 4.162.
    K. Mitsuo, Y. Egami, H. Suzuki, H. Mizushima, K. Asai: Development of lifetime imaging system for pressure-sensitive paint (2002) AIAA 2002–2909Google Scholar
  158. 4.163.
    K. Mitsuo, K. Asai, A. Takahashi, H. Mizushima: Advanced lifetime PSP imaging system for simultaneous pressure and temperature measurement (2004) AIAA 2004–2188Google Scholar
  159. 4.164.
    A. Watkins, J. Jordan, B. Leighty, J. Ingram, D. Ogelsby: Development of next generation lifetime PSP imaging system, Proc. 20th Int. Congr. Instrum. Aerospace Simulation Facilities, Gottingen (2003) pp. 372–377Google Scholar
  160. 4.165.
    R. H. Engler: PSP/Acoustic circulation method for surface pressure and flow field investigation around a delta wing, Proc. 21th Int. Congr. Instrum. Aerospace Simulation Facilities, Sendai (2005)Google Scholar
  161. 4.166.
    B. Schulze. C. Klein: Light emitting surfaces of wind tunnel models for excitation of pressure sensitive paint, Proc. 21th Int. Congr. Instrum. Aerospace Simulation Facilities, Sendai (2005)Google Scholar
  162. 4.167.
    W. Ruyten: Assimilation of physical chemistry models for lifetime analysis of pressure-sensitive paint (2004) AIAA 2004–0880Google Scholar
  163. 4.168.
    W. Ruyten, M. Sellers: Lifetime analysis of pressure-sensitive paint PtTFPP in FIBʼ (2004) AIAA (2004)–0881Google Scholar
  164. 4.169.
    W. Ruyten: Optimization of three-gate lifetime pressure-temperature-sensitive paint measurements (2004) AIAA 2004–2190Google Scholar
  165. 4.170.
    L. Goss, G. Jones, J. Crafton, S. Fonov: Temperature compensation in time-resolved pressure measurements, Proc. 11th Int. Symp. Flow Visualization, University of Notre Dame (2004)Google Scholar
  166. 4.171.
    E. Puklin, B. Carlson, S. Gouin, C. Costin, E. Green, S. Ponomarev, H. Tanjii, M. Gouterman: Ideality of Pressure Sensitive Paint. I. Platinum Tetra(pentafluorophenyl)porphine in Fluoroacrylic Polymer, J. Appl. Polym. Sci. 77(8), 2795–2804 (2002)Google Scholar
  167. 4.172.
    R. H Engler: DLR intensity and lifetime systems, PSP Workshop Pressure Sensitive Paint Workshop, NASA Langley Research Center (2000)Google Scholar
  168. 4.173.
    D. Gebbie, M. Reeder, C. Tyler, V. Fonov, J. Crafton: PSP-based experimental investigation of a blended wing body aircraft (2005) AIAA 2005–4719Google Scholar
  169. 4.174.
    J.H. Bell, et al.: Surface Pressure MeasurementsUsing Luminescence Coatings, Annu. Rev. Fluid Mech. 33, 155–206 (2001)CrossRefGoogle Scholar
  170. 4.175.
    S. Fonov, R. H. Engler, C. Klein, S. Mihailov, V. Mosharov, V. Kulesh, V. Radchenko, E. Schairer: Investigations of the pressure fields on the oscillating wings by pressure sensitive paint, Proc. 11th DGLR-Fach-Symposium der AG STAB vom 10–12 Nov. Technischen Universität, Berlin (1998)Google Scholar
  171. 4.176.
    M. Sajben: Uncertainty estimates for pressure sensitive paint measurements, AIAA J. 31(II), 2105–2110 (1993)CrossRefGoogle Scholar
  172. 4.177.
    M. J. Morris: Use of pressure–sensitive paint in low–speed flows, IEEE ICIASF Record Wright–Patterson AFB (1995)Google Scholar
  173. 4.178.
    O.C. Brown, R.D. Mehta, B. T. Cantwell: Low–speed flow studies using the pressure sensitive paint technique, 81th AGARD conference, Seattle (1997)Google Scholar
  174. 4.179.
    N. G. Verhaagen, L. N. Jenkins, S. B. Kern, A. E. Washburn: A study of the vortex flow, over a 76/40 deg double delta wing, NASA Contractor Report 195032, ICASE Report 95–5 (1995)Google Scholar
  175. 4.180.
    W. Ruyten, C. Fisher: On the effects of reflected light in luminescent paint measurements, 38th Aerospace Sciences Meeting and Exhibit, AIAA-2000–0833 (2000)Google Scholar
  176. 4.181.
    V. E. Mosharov, V. N. Radchenko, S. D. Fonov: Luminescent pressure sensors in aerodynamic experiments, published privately. Contact S. D. Fonov, TsAGI, Zhukovsky, 140160, Moscow reg., USSR or M. Osin, RUKAR, Russia (1994)Google Scholar
  177. 4.182.
    O. Trinks: Entwicklung und Einsatz einer Fluoreszenz-Lebensdauer-Methode zur Bestimmung instationärer Strömungsvorgänge an Verdichterschaufeln unter Verwendung druckempfindlicher Beschichtungen, Dissertation, Universität Göttingen (2000)Google Scholar
  178. 4.183.
    Fonov, L. Goss, J. Jones, V. Crafton, M. Fonov: New method for surface pressure measurements, 43rd AIAA Aerospace Science Meeting, Reno (2005) AIAA-2005–1029Google Scholar
  179. 4.184.
    R. H. Engler: Pressure sensitive paint in quantitative wind tunnel studies CEAS/KATnet Conference on Key Aerodynamic Technologies, Hilton Bremen (2005)Google Scholar
  180. 4.185.
    C. Klein, W. E. Sachs, U. Henne, R. H. Engler, A. Wiedemann, R. Konrath: International vortex flow experiment 2 (VFE-2), Experimental Pressure Distribution on the 65° Delta Wing Configuration using PSP, (Paper in preparation for the 44th AIAA Congress, Reno (2006))Google Scholar
  181. 4.186.
    M. Kurita, K. Nakakita, K. Mitsuo, S. Watanabe: Data processing of pressure-sensitive paint for industrial wind tunnel testing, 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland (2004) Paper 2004–2189Google Scholar
  182. 4.187.
    M. Benne, R. Kammeyer, J. Donovan, M. Rueger, J. Harris, D. Morgenroth, E. Green: General strategy for the development of an improved pressure–sensitive paint system, 2nd AIAA Aerodynamic Measurement Technology and Ground Test Conference, St. Louis (2002) AIAA 2002–2906Google Scholar
  183. 4.102.
    M. Brenci: Fibre optic optrodes for chemical sensing, Proc. Opt. Fibre Sensors (1993)Google Scholar
  184. 4.103.
    M. E. Sellers, I. A. Brill: Demonstration test of pressure sensitive paint in the AEDC 16ft transonic wind tunnel, AIAA paper 94–2481, l8th AIAA Ground Testing Conference (1994)Google Scholar
  185. 4.105.
    B. Carroll, M. Morris: Step response of pressure sensitive paint, AIAA J. 34(3), 521–526 (1996)CrossRefGoogle Scholar
  186. 4.106.
    The Boeing Aircraft Company, St Louis (2006)Google Scholar
  187. 4.107.
    J. W. Holmes: Pressure sensitive paint measurements in the DRA 8 ft ×8  ft high speed wind tunnel (GARTEUR Version) DRA/AS/HWA/TR95051/1, October (1995)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Graduate Aeronautical Laboratories, Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadenaUSA
  2. 2.German Aerospace Center, Experimental MethodsInstitute of Aerodynamics and Flow TechnologyGöttingenGermany

Personalised recommendations