Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

Measurements of the steady pressure in a fluid flow may be required to determine other thermodynamic properties, to determine forces on a body due to the pressure distribution over it, or in order to determine the dynamic head and flow velocity (for further details on the latter see Sect. 5.1. Pressure is a scalar representation of molecular activity, a measure of the nondirectional molecular motions. Thus it must, by definition, be measured by a device at rest relative to the flow. Whilst the common practice in the fluid mechanics community is to denote the pressure as static (as opposed to the coordinate-dependent total pressure, Sect. 3.1), this terminology introduces a fundamental redundancy.

In practice, pressure is commonly measured both at walls and in the freestream using the types of measurement device shown in Fig. 4.1 connected to a transducer of suitable sensitivity and range. The orifice of a small wall tapping represents a simple way to obtain the pressure impressed on the wall by the external flow. So-called static pressure tubes approximate the local fluid pressure in the freestream if the disturbance presented to the flow can either be accounted for or is not large to begin with. However this can only ever be strictly true for steady laminar flow due to the normal velocity component introduced when a flow becomes turbulent. Measurement of freestream pressure is one of the hardest challenges in fluid mechanics.

Determination of steady pressure: (a) wall tapping; (b) static tube

This chapter addresses measurement of pressure using wall tappings (Sect. 4.1) and static pressure tubes (Sect. 4.2), and especially errors due to the intrusive flow presence of real, finite-sized devices and calibrations to correct for these. Bryer and Pankhurst [4.1] and Chue [4.2] provided seminal monographs on the general topic of pressure probes in 1971 and 1975, respectively, which give detailed descriptions of measurement devices, coverage of the background to the various corrections and a survey of older data. The topic is covered here more concisely, with a view to

practical use by the engineer, and with reference to modern literature. The reader is referred to Bryer and Pankhurst [4.1] and Chue [4.2] for further details on most sections.

In more recent years a further method for obtaining pressure on the surface of a wind tunnel model has been developed, based on pressure sensitive paints (PSP). The introduction of PSP provides a method to measure the pressure on the surface of a model directly without the transducers and tubing associated with conventional means. A paint, the luminescence of which is dependent on air pressure, is applied to the surface of a wind tunnel model and the pressure distribution is obtained from the images produced by proper illumination. In Sect. 4.4 the basics of PSP are discussed and further subsections address in detail different paints, paint application procedures, imaging systems and image processing. In discussing the achievable accuracy of PSP techniques, both the spatial and temporal resolution is examined. The thermal sensitivity of the paint dye is introduced and this is closely linked to temperature-sensitive paints (TSP), as discussed in Chap. 7, Sect. 7.4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADC:

analog-to-digital converter

CCD:

charge-coupled device

CFD:

computational fluid dynamic

CMOS:

complementary metal oxide semiconductor

DLR:

German Aerospace Center

ETW:

European transonic wind tunnel

LED:

light-emitting diodes

NACA:

National Advisory Committee for Aeronautics

PSP:

pressure-sensitive paint

TSP:

temperature-sensitive paint

UV:

ultraviolet

References

  1. D.W. Bryer, R.C. Pankhurst: Pressure Probe Methods for Determining Wind Speed and Flow Direction, Technical Report (Her Majestyʼs Stationery Office, London 1971), .

    Google Scholar 

  2. S.H. Chue: Pressure probes for fluid measurement, Prog. Aerosp. Sci. 16, 147–223 (1975)

    Article  Google Scholar 

  3. A. Thom, C.J. Appelt: The pressure in a two-dimensional static hole at low Reynolds numbers, Rep. Memor. Aero. Res. Council 3090 (1957)

    Google Scholar 

  4. R.E. Rayle Jr.: An investigation of the influence of orifice geometry on static pressure measurements, MS Thesis (M.I.T., Boston 1949)

    Google Scholar 

  5. C.M. Allen, L.J. Hooper: Piezometer investigation, ASME Trans. 54(HYD-54-1) (1932)

    Google Scholar 

  6. C. Ducruet, A. Dyment: The pressure-hole problem, J. Fluid Mech. 142, 251–267 (1984)

    Article  Google Scholar 

  7. J.L. Livesey, J.D. Jackson, C.J. Southern: The static-hole error problem: an experimental investigation of errors for holes of varying diameters and depths, Aircraft Eng. 34, 43–47 (1962)

    Article  Google Scholar 

  8. R. Shaw: The influence of hole dimensions on static pressure measurements, J. Fluid Mech. 7, 550–564 (1960)

    Article  MATH  Google Scholar 

  9. A. Miyadzu: Über den Einfluss der Bohrungen auf die Druckanzeige, Ingen.-Arch. 7, 35–41 (1936), in German

    Article  Google Scholar 

  10. A.K. Ray: On the effect of orifice size on static pressure reading at different Reynolds numbers, Ing.-Arch. 24(3) (1956), , Engl. transl. Aero. Res. Counc. unclassified `A3ʼ report 18829, FM 2479, EA 527, TP 498

    Google Scholar 

  11. R.E. Franklin, J.M. Wallace: Absolute measurements of static-hole error using flush transducers, J. Fluid Mech. 42, 33–48 (1970)

    Article  Google Scholar 

  12. G. Fuhrmann: Theoretische und experimentelle Untersuchungen an Ballonmodellen, Ph.D. Thesis (Göttingen University, Göttingen 1912)

    Google Scholar 

  13. B.J. McKeon, A.J. Smits: Static pressure correction in high Reynolds number fully developed turbulent pipe flow, Meas. Sci. Tech. 13, 1608–1614 (2002)

    Article  Google Scholar 

  14. W. J. Rainbird: Errors in measurement of mean static pressure of a moving fluid due to pressure holes. In: Quart. Bull. Div. Mech. Eng. Nat. Aero. Est. DME/NAE #3, (Nat. Res. Council, Ottawa, 1967)

    Google Scholar 

  15. E.B. Plentovich: Status of orifice induced pressure error studies, AIAA 84-0245 (1984)

    Google Scholar 

  16. C. Ducruet: A method for correcting wall pressure measurements in subsonic compressible flow, J. Fluids Eng. 113, 256–260 (1991)

    Article  Google Scholar 

  17. M.V. Zagarola: Mean-flow scaling of turbulent pipe flow, Ph.D. Thesis (Princeton University, Princeton 1996)

    Google Scholar 

  18. V.A. Sandborn: Experimental evaluation of momentum terms in turbulent pipe flow, Tech. Note, Vol. 3266 (NACA Lewis Flight Prop. Lab., Cleveland 1955)

    Google Scholar 

  19. G.K. Patterson, W.J. Ewbank, V.A. Sandborn: Radial pressure gradient in turbulent pipe flow, Phys. Fluids 10 (1967)

    Google Scholar 

  20. T. Christiansen, P. Bradshaw: Effect of turbulence on pressure probes, J. Phys. E 14, 992–997 (1981)

    Article  Google Scholar 

  21. H.W. Liepmann, A. Roshko: Elements of Gas Dynamics (Wiley, New York 1957)

    Google Scholar 

  22. A. Pope, J.J. Harper: Low-speed Wind Tunnel Testing (Wiley, New York 1966)

    Google Scholar 

  23. S. Goldstein: A note on the measurement of total head and static pressure in a turbulent stream, Proc. Roy. Soc. London A 155(886), 570–575 (1936)

    Article  Google Scholar 

  24. A. Fage: On the static pressure in fully-developed turbulent flows, Proc. Roy. Soc. A 155(886), 576–596 (1936)

    Article  Google Scholar 

  25. P. Bradshaw, D.G. Goodman: The effect of turbulence on static-pressure tubes, Rep. Memor Aero. Res. Council 3527 (1968)

    Google Scholar 

  26. B.L. Welsh, P.R. Ashill: Pressure Measurement Techniques in Use at the Royal Aerospace Establishment, von Karman Institute Lecture Series (1989)

    Google Scholar 

  27. R.H. Engler, K. Hartmann, B. Schulze: A new optical pressure measurement system (OPMS) ICIASFʼ 91 Record, Rockville (1991) pp. 163–170

    Google Scholar 

  28. O.S. Wolfbeis, M.J.P. Leiner: Recent progress in optical oxygen sensing, SPIE Proc. 906, 42–48 (1988)

    Google Scholar 

  29. A. Baron, M. Gouterman: 100 μ s images of unsteady surface flow using fast responding pressure sensitive paint, Proc. 7th Int. Symp. Flow Visualization, Seattle (1995)

    Google Scholar 

  30. D. Lubbers, N. Opitz: Quantitative fluorescence photometry with biological fluids and gases, Adv. Exp. Med. Bin. 75, 441–448 (1976)

    Google Scholar 

  31. M. P. Gouterman, I. L. Kavandi, J. Gallery, J. B. Callis: Surface pressure measurement by oxygen quenching of luminescence, European Patent Application 0 472 243 A2, August (1991)

    Google Scholar 

  32. K. Asai, H. Kanda, J.P. Sullivan: Boundary layer transition detection in a cryogenic wind tunnel using luminescent paint, J. Aircraft 34(I), 34–42 (1997)

    Article  Google Scholar 

  33. J. H. Bell, B. G. McLachlan: Image registration for luminescent paint sensors, ALAA J. (1993) paper 93–0178

    Google Scholar 

  34. A. Orlov, V. Radchenko, N. Sadovskii, I. Truyanovsky: Luminescent pressure sensitive composition, European Patent Application 0 558 771 Al, March (1992)

    Google Scholar 

  35. Y. Mebarki, M. C. Merienne, Y. Le Sant: Application dʼun revetement luminescent a deux composes pour la mesure de lapression et de la temperature, Societe Francais des Thermiciens (SFT), Journee dʼEtudes (1997)

    Google Scholar 

  36. J.R. Lakowicz, et al.: Fluorescent lifetime imaging, Anal. Biochem. 202, 316–330 (1992)

    Article  Google Scholar 

  37. C. G. Morgan: Measurement of luminescence, US Patent 5,459,323 (1995)

    Google Scholar 

  38. D. M. Oglesby, C. K. Puram, B. T. Upchurch: Optimisation of measurements with pressure sensitive paints, NASA TM (4695), June (1995)

    Google Scholar 

  39. A. P. Bukov, et al.: Application of luminescent quenching for pressure field measurements on the model surface, Proc. Wind Tunnels Wind Tunnel Test Tech. Conf., Royal Aeronautical Society, Southampton (1992)

    Google Scholar 

  40. T. Araki, H. Misawa: Light emitting diode–based nanosecond ultraviolet light source for fluorescence lifetime measurements, Rev. Sci. Inst. 66, 2 (1995)

    Google Scholar 

  41. Y. Le Sant, M–C. Merienne: An image resection method applied to mapping techniques, IEEE ICIASF Record Wright–Patterson AFB, 46.1–46.8 (1995)

    Google Scholar 

  42. J. W. Holmes: Fluorescent lifetime imaging for pressure sensitive paint, GARTEUR AD(AG–21) Final Report, HWA/CN/RD/98006/1 (1998)

    Google Scholar 

  43. R.M. Dowgwillo, M.J. Morris, J.F. Donovan, M.E. Benne: Pressure sensitive paint in transonic wind–tunnel testing of the F–15, J. Aircraft 33, 1 (1996)

    Article  Google Scholar 

  44. R. M. Dowgwillo, et al.: The application of the pressure sensitive paint technique to high speed wind tunnel testing of a fighter aircraft configuration with complex store loadings, AIAA J. (1994) paper 94–1932

    Google Scholar 

  45. J. P. Crowder: Flow visualisation in flight testing, AIAA J. 90–1273 5th Biannual Flight Testing Conference (1990)

    Google Scholar 

  46. R. H. Engler, K. Hartmann, I. Troyanovski, A. Vollan: Description and assessment of a new optical pressure measurement system (OPMS) demonstrated in the high speed wind tunnel of DLR in Göttingen, DLR-FB 92-24, 1–66 (1992)

    Google Scholar 

  47. M.C. Merienne, Y. Mebarki: Contribution to the study of wing–nacelle interaction, Proc. CEAS Wind Tunnels and Wind Tunnel Test Tech. Conf., Cambridge (1997)

    Google Scholar 

  48. M. Kammeyer, C. Kelble, J. Donovan, M. Benne, T. Kihlken: Recent improvements in pressure–sensitive paint measurement accuracy at, Boeing, AIAA 2002–2907, 22nd AIAA Aerodynamic Measurement Technology and Ground Test Conference, St. Louis (2002)

    Google Scholar 

  49. M. Kammeyer, J. Donovan, C. Kelble, M. Benne, T. Kifilken, J. Felter: Accuracy assessment of a pressure–sensitive paint measurement system, AIAA 2002–0530, 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno (2002)

    Google Scholar 

  50. T. Gadella, T. Jovin, R. Cegg: Fluorescence lifetime imaging microscopy (FLIM): Spatial resolution of microstructures on the nanosecond time scale, J. Biophys. Chem. 48, 221–239 (1993)

    Article  Google Scholar 

  51. C. Klein: Einsatz einer druckempfindlichen Beschichtung (PSP) zur Bestimmung des momentanen Druckfeldes von Modellen im Windkanal. Dissertation (University Göttingen), DLR-Forschungsbericht 97–55 (1997)

    Google Scholar 

  52. R.H. Engler, M.C. Merienne, C. Klein, Y. Le Sant: Application of PSP in low speed flows, Aerosp. Sci. Technol. 6, 313–322 (2002), DLR Göttingen and ONERA Meudon (2002)

    Article  Google Scholar 

  53. Y. Iijima, Y. Egami, A. Nishizawa, K. Asai, U. Fey, R. H. Engler: Optimization of temperature-sensitive paint formulation for large-scale cryogenic wind tunnels, 20th ICIASFʼ03 Record, Göttingen, (2003) 70–76

    Google Scholar 

  54. H. Sakaue, J.W. Gregory, J.P. Sullivan, S. Raghu: Porous pressure sensitive paint for characterizing unsteady flowfields, AIAA J. 40, 1094–1098 (2002)

    Article  Google Scholar 

  55. K. Asai, H. Kanda, C. T. Cunningham, R. Erausquin, J. P. Sullivan: Surface pressure measurement in a cryogenic wind tunnel by using luminescent coating, International Congress on Instrumentation in Aerospace Simulation Facilities `97 Record (1997) pp. 105–114

    Google Scholar 

  56. Y. Amao, K. Asai, I. Okura: Photoluminescent oxygen sensing using palladium tetrakis(4-carboxyphenyl)porphyrin self-assembled membrane on alumina, Anal. Commun. 36, 170–180 (1999)

    Google Scholar 

  57. M. Kameda, N. Tezuka, T. Hangai, K. Asai, K. Nakakita, Y. Amao: Adsorptive pressure-sensitive coatings on porous anodized aluminium, Meas. Sci. Technol. 15, 489–500 (2004)

    Article  Google Scholar 

  58. V. Mosharov, V. Radchenko, A. Orlov: Binary pressure paint: A lot of problems, Presented at the 7th Annual Pressure Sensitive Paint Workshop, Purdue Univeristy, West Lafayette (1999)

    Google Scholar 

  59. R. H. Engler: Development of pressure sensitive paint, Presented at the 7th Annual Pressure SensitivePaint Workshop, Purdue Univeristy, West Lafayette (1999)

    Google Scholar 

  60. J. Crafton, S. Fonov, E. Jones, L. Goss, C. Carter: Bi-luminophore pressure-sensitive paint development, 8th Annual Pressure Sensitive Paint Workshop, NASA Langley Research Center (2000)

    Google Scholar 

  61. M. Kameda, T. Tabei, K. Nakakita, H. Sakaue, K. Asai: Image measurements of unsteady pressure fluctuation by a pressure-sensitive coating on porous anodized aluminum, Meas. Sci. Technol. (2005)

    Google Scholar 

  62. J. W. Gregory: Porous pressure-sensitive paint for measurement of unsteady pressures in turbomachinery, Proc. 42nd AIAA Aerospace Sci. Meeting Exhibit, AIAA-2004 294 (2004)

    Google Scholar 

  63. Y. Sakamura, M. Matsumoto, T. Suzuki: High frame-rate imaging of surface pressure distribution using a porous pressure-sensitive paint, Meas. Sci. Technol. 16, 759–765 (2005)

    Article  Google Scholar 

  64. T. Kawakami, T. Tabei, M. Kameda, K. Nakakita, K. Asai: Unsteady pressure-field measurements by a fast-responding PSP on porous anodized aluminum, Proc. 11th Int. Symp. Flow Visualization (2004) Paper No. 217

    Google Scholar 

  65. H. Sakaue, T. Tabei, M. Kameda: Hydrophobic monolayer coating on anodized aluminum pressure-sensitive paint, Sens. Actuat. (2005) (in preparation)

    Google Scholar 

  66. H. Masuda, K. Fukuda: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268, 1466–1468 (1995)

    Article  Google Scholar 

  67. H. Masuda, F. Hasegawa, S. Ono: Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc. 144, L127–L130 (1997)

    Article  Google Scholar 

  68. H. Masuda, K. Yada, A. Osaka: Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution, Jpn. J. Appl. Phys. 37, L1340–L1342 (1998)

    Article  Google Scholar 

  69. M. Saito, Y. Shiga, M. Miyagi, K. Wada, S. Ono: Optical transmittance of anodically oxidized aluminum alloy, Jpn. J. Appl. Phys. 34, 3134–3138 (1995)

    Article  Google Scholar 

  70. T. Hangai, M. Kameda, K. Nakakita, K. Asai: Time response characteristics of pyrene-based pressure-sensitive coatings on anodic porous alumina, Proc. 10th Int. Symp. Flow Visualization (2002) Paper No. F0269

    Google Scholar 

  71. I. Gursul: Recent development in delta wing aerodynamics, Aeronautical J. 108, 437–452 (2004)

    Google Scholar 

  72. D.G. Mabey: Some aspects of aircraft dynamic loads due to flow separation, Prog. Aerospace Sci. 26, 115–151 (1989)

    Article  Google Scholar 

  73. N. Chandrasekharan, M. Hammer, L. Kelly, L. A. Mattes: A paradigm shift for pressure sensitive paints, The 8th Pressure Sensitive Paint Workshop, NASA Langley Research Center (2000)

    Google Scholar 

  74. Y. Sakamura, Y. Kidoh, T. Suzuki, M. Matsumoto: Time resolved pressure measurements in shock-induced flows usinga pressure-sensitive paint, Proc. 23rd Int. Symp. Shock Waves, Fort Worth (2001) pp. 456–462

    Google Scholar 

  75. R. Crites, M. Benne: Emerging technology for pressure measurements in wind tunnels – pressure sensitive paint, AIAA 95–0106, Presented at the 33rd Aerospace Sciences Meeting, Reno (1995)

    Google Scholar 

  76. J. H. Bell: Accuracy limitation of lifetime-based pressure sensitive paint measurements, 19th Int. Congr. Instrum. Aerospace Simulation Facilities, Cleveland (2001)

    Google Scholar 

  77. L. P. Goss, D. D. Trump, B. Sarka, L. N. Lydick, W. M. Baker: Multi-dimensional time-resolved pressure-sensitive-paint techniques: A numerical and experimental comparison, AIAA-2000–0832, Presented at the 38th Aerospace Sciences Meeting, Reno (2000)

    Google Scholar 

  78. T. Liu, S. D. Torgerson, J. P. Sullivan, R. Johnston, S. Fleeter: Rotor blade pressure measurement in a high speed axial compressor using pressure and temperature sensitive paints, AIAA-97–0162, Presented at the 35th Aerospace Sciences Meeting, Reno (1997)

    Google Scholar 

  79. A. G. Davies: Temperature compensated PSP measurements on a 2D wing in transonic flow, Presented at the 6th Pressure-Sensitive Paint Workshop, Seattle (1998)

    Google Scholar 

  80. J.W. Holmes: Analysis of radiometric, lifetime and fluorescent lifetime imaging for pressure sensitive paint, Aeronaut. J. 2306, 189–94 (1998)

    Google Scholar 

  81. W. M. Baker: Recent experiences with pressure sensitive paint testing AIAA-2001–0306, Presented at the 39th Aerospace Sciences Meeting, Reno (2001)

    Google Scholar 

  82. M. E. Sellers: Application of pressure sensitive paint for determining aerodynamic loads on a scale model of the F-16C AIAA-2000–2528, Presented at the 21st Aerodynamic Measurement Technology and Ground Testing Conference, Denver (2000)

    Google Scholar 

  83. W.M. Ruyten: Self-Illumination Calibration Technique for Luminescent Paint measurements, Rev. Sci. Instrum. 68(7), 3452–57 (1997)

    Article  Google Scholar 

  84. S. Ponomarov, M. Gouterman: Ideality of Pressure-Sensitive Paint, I. Platinum Tetra(penta-fluorophenyl)porphine in Fluoroacrylic Polymer, J. Appl. Polym. Sci. 77(8), 2795 (2000)

    Google Scholar 

  85. M. Lyonnet, B. Deleglise, G. Grenat, A. Bykov, V. Mosharov: The two-component PSP investigation on a civil aircraft model in S2MA wind tunnel, AGARD Conf. Proc. CP-601: Adv. Aerodyn. Meas. Technol., 81st Fluid Dyn. Panel Sym, Seattle, pp 30–1 – 30–8. Neuilly -sur-Seine, France: AGARD (1998)

    Google Scholar 

  86. V. Mosharov, V. Radchenko, S. Fonov: Luminescent pressure sensors in aerodynamic experiment, Moscow: Cent. Aerohydrodyn. Inst. (TsAGI). CWA Int. Corp. (1997) p. 151

    Google Scholar 

  87. T. Liu, B.T. Campbell, S.P. Burns, J.P. Sullivan: Temperature- and pressure-sensitive luminescent paints in aerodynamics, Appl. Mech. Rev. 50(4), 227–246 (1997)

    Article  Google Scholar 

  88. K. Nakakita, M. Kurita, K. Mitsuo: Development of the pressure-sensitive paint measurement for large wind tunnels at japan aerospace exploration agency, 24th Congress of the International Council of the Aeronautical Sciences, Yokohama (2004) ICAS2004–3.2.2

    Google Scholar 

  89. J. H. Bell: Applications of pressure sensitive paint to testing at very low flow speeds, 42nd AIAA. Aerospace Sciences Meeting & Exhibit, Reno (2004) AIAA-2004–0878

    Google Scholar 

  90. K. Mitsuo, Y. Iijima, A. Nishizawa, K. Nakakita, K. Asai: Application of PSP. Measurement to low speed wind tunnel testing using an automobile model, Proc. MOSAIC Workshop, Tokyo (2003) pp.70–71

    Google Scholar 

  91. Y. Mébarki, K. R. Cooper: Aerodynamic testing of a generic automotive model with pressure sensitive paint, 10th Int. Symp. Flow Visualization, Kyoto (2002) ISFV-2002-F0120

    Google Scholar 

  92. Y. Le Sant, F. Bouvier, M. C Merienne, J. L Peron: Low speed tests using PSP at ONERA, 39th AIAA Aerospace Sciences Meeting& Exhibit, Reno (2001) AIAA 2001–0555

    Google Scholar 

  93. Y. Shimbo, R. D. Mehta, B. J. Cantwell: Vortical flow field investigation using the pressure sensitive paint technique at low speed, 35th AIAA Aerospace Science Meeting, Reno (1997) AIAA 97–0388

    Google Scholar 

  94. Y. Shimbo, N. Komatsu, K. Asai: Pressure sensitive paint application at large production wind tunnels, 22nd International Congress of Aeronautical Science, Harrogate (2000) ICAS2000–3.3.3

    Google Scholar 

  95. C. Y. Huang, H. Sakaue, J. W. Gregory, J. P. Sullivan: Molecular sensors for MEMS, 40th Aerospace Sciences Meeting & Exhibit, Reno (2002) AIAA2002–0256

    Google Scholar 

  96. C. Y Huang, J. P Sullivan: Flow visualization and pressure measurement in micronozzles, 11th Int. Symp. Flow Visualization, Univ. of Notre Dome (2004)

    Google Scholar 

  97. A. Davies, D. Bedwell, M. Dunleavy, N. Brownjohn: Pressure sensitive paint limitations and solutions, Proc. 17th International Congress on Instrumentation in Aerospace Simulation Facilities, Pacific Grove (1997) pp.11–21

    Google Scholar 

  98. M. Hamner, B. Campbell, T. Liu, J. P Sullivan: A scanning laser system for temperature and pressure sensitive paint, AIAA J. (1994) 94–0728

    Google Scholar 

  99. V.O. Stern, M. Volmer: Über die Abklingungszeit der Fluoreszenz, Phys. Z. 20, 183 (1919), in German

    Google Scholar 

  100. J.I. Peterson, R.V. Fitzgerald: Rev. Sci. Instrum. 51, 670 (1980)

    Article  Google Scholar 

  101. M.M. Ardasheva, L.B. Nevskii, G.E. Pervushin: Measurement of pressure distribution by means of indicator coatings, J. Appl. Mech. Techn. Phys. 2, 469–474 (1985)

    Google Scholar 

  102. F. Rodriguez: Principles of Polymer Systems, 2nd edn. (McGraw-Hill, New York 1987)

    Google Scholar 

  103. G. M. Zharkova, A. I. Maksinov, A. A. Pavlov, V. M. Khachaturyan: Pressure visualization on aerodynamic surface by the method of luminescent coating, Proc. 6th Int. Symp. on Flow Visualization Yokohama (Springer, Heidelberg 1992)

    Google Scholar 

  104. H. Sakaue, J.P. Sullivan: Time response of anodized aluminum pressure-sensitive paint, AIAA J. 39, 1944–1949 (2001)

    Article  Google Scholar 

  105. N.A. Winslow, B.F. Carroll, A.J. Kurdila: Model development and analysis of the dynamics of pressure-sensitive paints, AIAA J. 39, 660–666 (2001)

    Article  Google Scholar 

  106. R. H. Engler: Pressure sensitive paints in quantitative wind tunnel studies, Proc. 11th Int. Symp. Flow Visualization, University of Notre Dame, South Bend (2004)

    Google Scholar 

  107. T. Liu, J.P. Sullivan: Pressure and Temperature Sensitive Paint (Springer, Heidelberg 2004)

    Google Scholar 

  108. R. H Engler: PSP and TSP for different Wind Tunnels and Flow Facilities, The 8th International Symposyium on Fluid Control, Measurement and Vizualization, Chengdu (2005)

    Google Scholar 

  109. K.R. Schanze, B.F. Carroll, S. Korotkevitch, M. Morris: Temperature dependence of pressure sensitive paints, AIAA J. 35(2), 306–310 (1997)

    Article  Google Scholar 

  110. S. D. Schwab, R. M. Levy: Pressure sensitive paint formulations and methods, US Patent 5,359,887, Nov. 1 (1994)

    Google Scholar 

  111. J. Kavandi: Luminescent barometry in wind tunnels, Rev. Sci. Instrum. 61, 11 (1990)

    Article  Google Scholar 

  112. B. G. McLachlan, J. H. Bell: Flight testing of a luminescent surface pressure sensor, NASA Tech. Memorandum 103970 (1992)

    Google Scholar 

  113. U. Henne: Application if the PSP technique in low speed range wind tunnels, STAB Workshop, Göttingen (2005)

    Google Scholar 

  114. C. Parker: Photoluminescence of Solutions (Elsevier, Amsterdam 1968), Chapter 1C

    Google Scholar 

  115. N.J. Turro: Modern Molecular Photochemistry (Univ. Science Books, New York 1991)

    Google Scholar 

  116. O. Wolfbeis: Fibre–optical fluor sensors in analytical and clinical chemistry, Chem. Anal. 77, 129 (1988)

    Google Scholar 

  117. A. Vollan, L. Alati: A new optical pressure measurement system, 14th ICIASF Congress (1991) p. 3

    Google Scholar 

  118. B. Ranby, J.F. Rabek: Singlet Oxygen: Reactions with Organic Compounds and Polymers (Wiley, New York 1978)

    Google Scholar 

  119. A. Juris, V. Balzani, F. Barigelld: Ru (II )polypyridine complexes: Photophysics, photochemistry, electrochemistry, and chemo luminescence, Coord. Chem. Rev. 84, 85277 (1988)

    Article  Google Scholar 

  120. F. Lythe: Die luminescence of Tris (Bipyridyl) ruthenium (11) chloride, J. Am. Chem. Soc. 91(2), 131–137 (1969)

    Google Scholar 

  121. S. Pauly: Permeability and diffusion data. In: Polymer Handbook, ed. by J. Brandrup, E.H. Immergut (Wiley Interscience, New York 1989)

    Google Scholar 

  122. J.R. Welty: Engineering Heat Transfer (Whiley, New York 1974) pp. 102–114

    Google Scholar 

  123. A. Bukov, V. Pesetsky: Optical surface pressure measurements: Accuracy and application field evaluation, Proc. AGARD CP535, Brussels, 73rd Fluid Dynamics Panel, October (1993) Paper 24

    Google Scholar 

  124. E.U. Condon, H. Odishaw: Handbook of Physics (McGraw Hill, New York 1958)

    Google Scholar 

  125. B. Carroll, A. Winslow, J. Abbitt, K. Schanz, M. Morris: Pressure sensitive paint application to a sinusoidal pressure fluctuation, IEEE ICIASF Record Wright–Patterson AFB (1995) 35/1–35/6

    Google Scholar 

  126. R. H. Engler: Further developments of pressure sensitive paints (OPMS) for non flat models in steady transonic flow and unsteady conditions IEEE ICIASF Record Wright–Patterson AFB (1995) 33/1–33/8

    Google Scholar 

  127. V. Borovoy, A. Bukov, V. Mosharov, et al.: Pressure sensitive paint in shock wind tunnel, IEEE ICIASF Record Wright–Patterson AFB (1995) 34/1–34/4

    Google Scholar 

  128. W. Holmes: The relevance of pressure sensitive paint to aerodynamic research, J. Fluoresc. 3(3), 179–183 (1994)

    Article  Google Scholar 

  129. S. F. Hoemer: Fluid–dynamic drag, Library on Congress Catalog Card Number 64–19666 (1965) chapters 2 and 5

    Google Scholar 

  130. U. Fey, R. H. Engler Y. Egami, Y. Iijima, K. Asai, U. Jansen, J.Quest: Transition detection by temperature sensitive paint at cryogenic temperatures in the European Transonic Wind Tunnel (ETW), ICIASFʼ03 Record, Göttingen (2003) pp. 77–88

    Google Scholar 

  131. S. D. Torgerson, T. Liu, J. P. Sullivan: Use of pressure sensitive paints in low speed flows, AIAA–96–2184,19 AIAA Advanced Measurement and Ground Testing Technology Conference (1996)

    Google Scholar 

  132. K. Jules, M. Carbonaro, S. Zemsch: Application of pressure sensitive paints in hypersonic flows, NASA Tech. Memorandum 106824, February (1995)

    Google Scholar 

  133. J. W. Grate, M. H. Abrahams: Solubility properties of siloxane polymers for chemical sensors, Pacific Northwest Fibre Optic Sensors Workshop 3–4, SPIE 2574:71–77 (1995)

    Google Scholar 

  134. K. Goswami, S. Klainer: Fibre optic chemical sensor for the measurement of partial pressure of oxygen, SPIE 990 (1988)

    Google Scholar 

  135. M. J. Morris, et al.: Aerodynamic applications of pressure sensitive paint, AIAA J. (1992) paper 92–0264

    Google Scholar 

  136. J. F. Donovan, et al.: Data analysis techniques for pressure–and temperature–sensitive paint, AIAA J. (1993) paper 93–0176

    Google Scholar 

  137. C. Klein, R. H. Engler: First results using the new DLR PSP system–Intensity and lifetime measurements, 43.1–43.9 Proc. CEAS Wind Tunnels Wind Tunnel Test Tech. Conf. Cambridge (1997)

    Google Scholar 

  138. A. Draeijer, R. Sanders: Fluorescence lifetime imaging: a new tool in confocal microscopy. In: Handbook of Confocal Microscopy (Plenum, New York 1995)

    Google Scholar 

  139. A. G. Davies: Recent developments in pressure sensitive paint measurements using the BAe system, 28.1–28.11 Proc. CEAS Wind Tunnels Wind Tunnel Test Techn. Conf. Cambridge (1997)

    Google Scholar 

  140. S. P. Burns, I. P. Sullivan: The use of pressure sensitive paints on rotating machinery, IEEE ICIASF Record Wright –Patterson AFB (1995) 32.1–32.14

    Google Scholar 

  141. J. W. Holmes: Analysis of radiometric, lifetime and fluorescent lifetime imaging, J. Roy. Aeronaut. Soc. (1998) Paper 2306

    Google Scholar 

  142. R. C. Crites: Pressure sensitive paint technique, Measurement Techniques Lecture Series 1993–05, von Karman Institute for Fluid Dynamics (1993)

    Google Scholar 

  143. S. W. Houck, R. G. Hepp, M. I. Morris, M. E. Benne: Pressure sensitive paint flight test, IEEE Aerospace Applications Conf., Aspen Co 4:241–252 (1996)

    Google Scholar 

  144. C. A. Fuentes, J. D. Abbitt: Development of a film–based pressure sensitive paint technique, AIAA 96–2933, 32nd AIAA/ASME/SAE/ASEE Joint propulsion conference, Lake Buena Vista, FL (1996)

    Google Scholar 

  145. R. D. La Belle, S. D. Garvey: Introduction to high performance CCD cameras, IEEE ICIASP Record Wright–Patterson AFB (1995)

    Google Scholar 

  146. R. H. Engler, U. Fey, U. Henne, C. Klein, W. E. Sachs: Pressure sensitive paints and temperature sensitive paints in quantitative wind tunnel studies, J. Visualization (2004) paper 04–053

    Google Scholar 

  147. N. Brown, M. E. Benne, M. E. Kammeeyer: Factors influencing camera selection for the boing pressure sensitive paint system, Proc. 42nd AIAA Aerospace Sciences Meeting and Exhibit (2004) AIAA-2004–294

    Google Scholar 

  148. S. S. Bowen: Comparison of motion estimators for an intensity variant image sequence, SPIE Image and Video Processing H 2182 (1994)

    Google Scholar 

  149. W.M. Ruyten: Self–illumination calibration technique for luminescent paint measurements, Rev. Sci. Instrum. 68(7), 3452–3457 (1997)

    Article  Google Scholar 

  150. Y. Mebarki: Peintures sensibles a lapression: Application en soufflerie aerodynamique, Thesis (University of Lille, Lille 1997)

    Google Scholar 

  151. M. J. Morris, J. F. Donovan: Application of pressure–and temperature sensitive paints in high speed flows, AIAA J. 94–2231, 25th AIAA Fluid Dynamics Conference (1994)

    Google Scholar 

  152. B.G. McLachlan, J.H. Bell, H. Park, et al.: Pressure–sensitive paint measurements on a supersonic high–sweep oblique wing model, J. Aircraft 32(2), 470–483 (1995)

    Article  Google Scholar 

  153. J. Holmes: Analysis of radiometric, lifetime and fluorescence lifetime imaging, Aeronautical J. 2306, 189–194 (1998)

    Google Scholar 

  154. L. Goss, D. Trump, B. Sarka, L. Lydick, W. Baker: Multi-dimensional time-resolved pressure-sensitive-paint techniques: A numerical and experimental comparison (2000) AIAA 2000–0832

    Google Scholar 

  155. L. Coyle, M. Gouterman: Correcting Lifetime Measurements for Temperarure, Sens. Actuat. B 61, 92–99 (1999)

    Article  Google Scholar 

  156. J. Hradil, C. Davis, C. Mongey, C. McDonagh, B.D. MacCraith: Temperature-corrected pressure-sensitive paint measurements using a single camera and a dual-lifetime approach, Meas. Sci. Technol. 13, 1552–1557 (2002)

    Article  Google Scholar 

  157. K. Mitsuo, Y. Egami, H. Suzuki, H. Mizushima, K. Asai: Development of lifetime imaging system for pressure-sensitive paint (2002) AIAA 2002–2909

    Google Scholar 

  158. K. Mitsuo, K. Asai, A. Takahashi, H. Mizushima: Advanced lifetime PSP imaging system for simultaneous pressure and temperature measurement (2004) AIAA 2004–2188

    Google Scholar 

  159. A. Watkins, J. Jordan, B. Leighty, J. Ingram, D. Ogelsby: Development of next generation lifetime PSP imaging system, Proc. 20th Int. Congr. Instrum. Aerospace Simulation Facilities, Gottingen (2003) pp. 372–377

    Google Scholar 

  160. R. H. Engler: PSP/Acoustic circulation method for surface pressure and flow field investigation around a delta wing, Proc. 21th Int. Congr. Instrum. Aerospace Simulation Facilities, Sendai (2005)

    Google Scholar 

  161. B. Schulze. C. Klein: Light emitting surfaces of wind tunnel models for excitation of pressure sensitive paint, Proc. 21th Int. Congr. Instrum. Aerospace Simulation Facilities, Sendai (2005)

    Google Scholar 

  162. W. Ruyten: Assimilation of physical chemistry models for lifetime analysis of pressure-sensitive paint (2004) AIAA 2004–0880

    Google Scholar 

  163. W. Ruyten, M. Sellers: Lifetime analysis of pressure-sensitive paint PtTFPP in FIBʼ (2004) AIAA (2004)–0881

    Google Scholar 

  164. W. Ruyten: Optimization of three-gate lifetime pressure-temperature-sensitive paint measurements (2004) AIAA 2004–2190

    Google Scholar 

  165. L. Goss, G. Jones, J. Crafton, S. Fonov: Temperature compensation in time-resolved pressure measurements, Proc. 11th Int. Symp. Flow Visualization, University of Notre Dame (2004)

    Google Scholar 

  166. E. Puklin, B. Carlson, S. Gouin, C. Costin, E. Green, S. Ponomarev, H. Tanjii, M. Gouterman: Ideality of Pressure Sensitive Paint. I. Platinum Tetra(pentafluorophenyl)porphine in Fluoroacrylic Polymer, J. Appl. Polym. Sci. 77(8), 2795–2804 (2002)

    Google Scholar 

  167. R. H Engler: DLR intensity and lifetime systems, PSP Workshop Pressure Sensitive Paint Workshop, NASA Langley Research Center (2000)

    Google Scholar 

  168. D. Gebbie, M. Reeder, C. Tyler, V. Fonov, J. Crafton: PSP-based experimental investigation of a blended wing body aircraft (2005) AIAA 2005–4719

    Google Scholar 

  169. J.H. Bell, et al.: Surface Pressure MeasurementsUsing Luminescence Coatings, Annu. Rev. Fluid Mech. 33, 155–206 (2001)

    Article  Google Scholar 

  170. S. Fonov, R. H. Engler, C. Klein, S. Mihailov, V. Mosharov, V. Kulesh, V. Radchenko, E. Schairer: Investigations of the pressure fields on the oscillating wings by pressure sensitive paint, Proc. 11th DGLR-Fach-Symposium der AG STAB vom 10–12 Nov. Technischen Universität, Berlin (1998)

    Google Scholar 

  171. M. Sajben: Uncertainty estimates for pressure sensitive paint measurements, AIAA J. 31(II), 2105–2110 (1993)

    Article  Google Scholar 

  172. M. J. Morris: Use of pressure–sensitive paint in low–speed flows, IEEE ICIASF Record Wright–Patterson AFB (1995)

    Google Scholar 

  173. O.C. Brown, R.D. Mehta, B. T. Cantwell: Low–speed flow studies using the pressure sensitive paint technique, 81th AGARD conference, Seattle (1997)

    Google Scholar 

  174. N. G. Verhaagen, L. N. Jenkins, S. B. Kern, A. E. Washburn: A study of the vortex flow, over a 76/40 deg double delta wing, NASA Contractor Report 195032, ICASE Report 95–5 (1995)

    Google Scholar 

  175. W. Ruyten, C. Fisher: On the effects of reflected light in luminescent paint measurements, 38th Aerospace Sciences Meeting and Exhibit, AIAA-2000–0833 (2000)

    Google Scholar 

  176. V. E. Mosharov, V. N. Radchenko, S. D. Fonov: Luminescent pressure sensors in aerodynamic experiments, published privately. Contact S. D. Fonov, TsAGI, Zhukovsky, 140160, Moscow reg., USSR or M. Osin, RUKAR, Russia (1994)

    Google Scholar 

  177. O. Trinks: Entwicklung und Einsatz einer Fluoreszenz-Lebensdauer-Methode zur Bestimmung instationärer Strömungsvorgänge an Verdichterschaufeln unter Verwendung druckempfindlicher Beschichtungen, Dissertation, Universität Göttingen (2000)

    Google Scholar 

  178. Fonov, L. Goss, J. Jones, V. Crafton, M. Fonov: New method for surface pressure measurements, 43rd AIAA Aerospace Science Meeting, Reno (2005) AIAA-2005–1029

    Google Scholar 

  179. R. H. Engler: Pressure sensitive paint in quantitative wind tunnel studies CEAS/KATnet Conference on Key Aerodynamic Technologies, Hilton Bremen (2005)

    Google Scholar 

  180. C. Klein, W. E. Sachs, U. Henne, R. H. Engler, A. Wiedemann, R. Konrath: International vortex flow experiment 2 (VFE-2), Experimental Pressure Distribution on the 65° Delta Wing Configuration using PSP, (Paper in preparation for the 44th AIAA Congress, Reno (2006))

    Google Scholar 

  181. M. Kurita, K. Nakakita, K. Mitsuo, S. Watanabe: Data processing of pressure-sensitive paint for industrial wind tunnel testing, 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland (2004) Paper 2004–2189

    Google Scholar 

  182. M. Benne, R. Kammeyer, J. Donovan, M. Rueger, J. Harris, D. Morgenroth, E. Green: General strategy for the development of an improved pressure–sensitive paint system, 2nd AIAA Aerodynamic Measurement Technology and Ground Test Conference, St. Louis (2002) AIAA 2002–2906

    Google Scholar 

  183. M. Brenci: Fibre optic optrodes for chemical sensing, Proc. Opt. Fibre Sensors (1993)

    Google Scholar 

  184. M. E. Sellers, I. A. Brill: Demonstration test of pressure sensitive paint in the AEDC 16ft transonic wind tunnel, AIAA paper 94–2481, l8th AIAA Ground Testing Conference (1994)

    Google Scholar 

  185. B. Carroll, M. Morris: Step response of pressure sensitive paint, AIAA J. 34(3), 521–526 (1996)

    Article  Google Scholar 

  186. The Boeing Aircraft Company, St Louis (2006)

    Google Scholar 

  187. J. W. Holmes: Pressure sensitive paint measurements in the DRA 8 ft ×8  ft high speed wind tunnel (GARTEUR Version) DRA/AS/HWA/TR95051/1, October (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Beverley McKeon Prof. or Rolf Engler Dr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

McKeon, B., Engler, R. (2007). Pressure Measurement Systems. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics