Skip to main content

Review of Some Fundamentals of Data Processing

  • Reference work entry
Springer Handbook of Experimental Fluid Mechanics

Abstract

This chapter is devoted to reviewing some fundamental transforms and analysis procedures commonly used for both signal and data processing in fluid mechanics measurements. The chapter begins with a brief review of the Fourier transform and its digital counterpart the discrete Fourier transform. In particular its use for estimating power spectral density is discussed in detail. This is followed by an introduction of the correlation function and its relation to the Fourier transform. The Hilbert transform completes the introductory topics. The chapter then turns to a rigorous presentation of the proper orthogonal decomposition (POD) in the context of the approximation theory and as an application of singular value decomposition (SVD). The relationship between POD and SVD is discussed and POD is described in a statistical setting using an averaging operation for use with turbulent flows. The different POD approaches are briefly introduced, whereby the main differences between the classical POD and the snapshot POD are highlighted. This section closes with a presentation of the POD as a generalization of the classical Fourier analysis to inhomogeneous directions. The chapter continues with a discussion of conditional averages and stochastic estimation as a means of studying coherent structures in turbulent flows before moving in a final section to a comprehensive discussion of wavelets as a combination of data processing in time and frequency domain. After first introducing the continuous wavelet transform and orthogonal wavelet transform their application in experimental fluid mechanics is illustrated through numerous examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3-D:

three-dimensional

CFT:

continuous Fourier transform

CS:

coherent structures

DFT:

discrete Fourier transform

FFT:

fast Fourier transform

LES:

large-eddy simulation

LIM:

local intermittency measure

MRA:

multiresolution analysis

ODE:

ordinary differential equations

PDE:

partial differential equations

PDF:

probability density function

PIV:

particle image velocimetry

POD:

proper orthogonal decomposition

PSD:

particle size distribution

PSD:

power spectral density

RIC:

relative information content

SVD:

singular value decomposition

References

  1. S.L. Marple Jr.: Digital Spectral Analysis (Prentice-Hall, Englewood Cliffs 1987)

    Google Scholar 

  2. J.S. Bendat, A.G. Piersol: Random Data: Analysis and Measurement Procedures (Wiley, New York 1986)

    MATH  Google Scholar 

  3. J.L. Lumley: The structure of inhomogeneous turbulence. In: Atmospheric Turbulence and Wave Propagation, ed. by A.M. Yaglom, V.I. Tatarski (Nauka, Moscow 1967) pp. 166–178

    Google Scholar 

  4. A.A. Townsend: The Structure of Turbulent Shear Flow, 2nd edn. (Cambridge Univ. Press, Cambridge 1976)

    MATH  Google Scholar 

  5. R. Adrian, J.P. Bonnet, J. Delville, F. Hussain, J. Lumley, O. Metais, C. Vassilicos: CISM/ERCOFTAC Advanced Course: Eddy Structure Identification Techniques in Free Turbulent Shear Flows (Springer, Berlin, Heidelberg 1996)

    Google Scholar 

  6. J.L. Lumley: Stochastic Tools in Turbulence (Academic, New York 1970)

    MATH  Google Scholar 

  7. D.D. Kosambi: Statistics in function space, J. Indian Math. Soc. 7, 76–88 (1943)

    MATH  MathSciNet  Google Scholar 

  8. M. Loève: Fonctions aléatoires du second ordre, Comptes Rend. Acad. Sci. 220, 295–300 (1945)

    MATH  Google Scholar 

  9. M. Loève: Probability Theory (Van Nostrand, New York 1955)

    MATH  Google Scholar 

  10. K. Karhunen: Zur Spektraltheorie stochastischer Prozesse, Ann. Acad. Sci. Fenn. A1 34, 1–7 (1946), in German

    Google Scholar 

  11. V.S. Pougachev: General theory of the correlations od random functions, Izv. Akad. Nauk. SSSR Mat. 17, 401–402 (1953)

    Google Scholar 

  12. A.M. Obukhov: Energy distribution in the spectrum of a turbulent flow, Izv. A. N. SSSR Geogr. Geophys. 4-5, 453–466 (1941)

    Google Scholar 

  13. A.M. Obukhov: Statistical description of continuous fields, Trudy Geophys. Int. Akad. Nauk. SSSR 24, 3–42 (1954)

    Google Scholar 

  14. I.T. Joliffe: Principal Component Analysis (Springer, New York 1986)

    Google Scholar 

  15. H. Hotelling: Analysis of a complex statistical variables into principal components, J. Educ. Psychol. 24, 417–441 (1933)

    Article  Google Scholar 

  16. G.H. Golub, C.F. Van Loan: Matrix Computations, 2nd edn. (Johns Hopkins Univ. Press, Baltimore 1990)

    Google Scholar 

  17. A. Papoulis: Probability, Random variables, and Stochastic Processes (McGraw-Hill, New York 1965)

    MATH  Google Scholar 

  18. M. Kirby, L. Sirovich: Application of the Karhunen–Loève procedure for the characterization of human faces, IEEE T. Pattern Anal. 12(1), 103–108 (1990)

    Article  Google Scholar 

  19. V.R. Algazi, D.J. Sakrison: On the optimality of the Karhunen–Loève expansion, IEEE Trans. Inform. Theory 15, 319–321 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  20. C.A. Andrews, J.M. Davies, G.R. Schwartz: Adaptative data compression, Proc. IEEE 55, 267–277 (1967)

    Article  Google Scholar 

  21. S.S. Ravindran: Reduced-order adaptive controllers for fluid flows using POD, J. Sci. Comput. 15(4), 457–478 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. S.S. Ravindran: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition, Int. J. Numer. Meth. Fluids 34, 425–448 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Courant, D. Hilbert: Methods of Mathematical Physics, Vol. 1 (Wiley, New-York 1953)

    Google Scholar 

  24. P. Holmes, J.L. Lumley, G. Berkooz: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics (Cambridge Univ. Press, Cambridge 1996)

    Book  Google Scholar 

  25. J. Delville, L. Ukeiley, L. Cordier, J.-P. Bonnet, M. Glauser: Examination of large-scale structures in a turbulent mixing layer, Part 1. Proper orthogonal decomposition, J. Fluid Mech. 391, 91–122 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Gordeyev: Investigation of coherent structure in the similarity region of the planar turbulent jet using POD and wavelet analysis, Ph.D. Dissertation (University of Notre Dame, Notre Dame 1999)

    Google Scholar 

  27. J.-P. Bonnet, J. Delville: Coherent structures in turbulent flows and numerical simulations approaches. In: Lecture Series 2002-04 on Post-Processing of Experimental and Numerical Data, ed. by P. Millan, M.L. Riethmuller (Von Karman Institute for Fluid Dynamics, Bruscelles 2002)

    Google Scholar 

  28. H.E. Fiedler: Control of free turbulent shear flows. In: Flow Control: Fundamental and Practices, Lecture Notes Phys., Vol. 53, ed. by M. Gad-el-Hak, A. Pollard, J.-P. Bonnet (Springer, Berlin, Heidelberg 1998) pp. 336–429

    Google Scholar 

  29. N. Aubry, P. Holmes, J.L. Lumley, E. Stone: The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech. 192, 115–173 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Ukeiley, L. Cordier, R. Manceau, J. Delville, M. Glauser, J.-P. Bonnet: Examination of large-scale structures in a turbulent mixing layer, Part 2. Dynamical systems model, J. Fluid Mech. 441, 67–108 (2001)

    Article  MATH  Google Scholar 

  31. L. Cordier, M. Bergmann: Two typical applications of POD: Coherent structures eduction and reduced order modelling. In: Lecture Series 2002-04 on Post-Processing of Experimental and Numerical Data, ed. by P. Millan, M.L. Riethmuller (Von Karman Institute for Fluid Dynamics, Bruscelles 2002)

    Google Scholar 

  32. M. Hinze: Optimal and instantaneous control of the instationary Navier–Stokes equations, Accreditation to supervise research dissertation (Berlin University, Berlin 2000)

    Google Scholar 

  33. S. Volkwein: Optimal and suboptimal control of partial differential equations: Augmented Lagrange-SQP methods and reduced order modeling with proper orthogonal decomposition, Accreditation to supervise research dissertation (Graz University, Graz 2001)

    Google Scholar 

  34. M. Fahl: Trust-Region methods for flow control based on reduced order modeling, Ph.D. Dissertation (Trier University, Trier 2000)

    Google Scholar 

  35. M. Bergmann, L. Cordier, J.-P. Brancher: Optimal rotary control of the cylinder wake using POD reduced order model, Phys. Fluids 17(9), 1–21 (2005)

    Article  Google Scholar 

  36. A. Chatterjee: An introduction to the proper orthogonal decomposition, Curr. Sci. 78(7), 808–817 (2000)

    Google Scholar 

  37. T.J. Rivlin: An Introduction to the Approximation of Functions (Dover, New York 1981)

    MATH  Google Scholar 

  38. N.J. Higham: Matrix nearness problems and applications. In: Applications of Matrix Theory, ed. by M.J.C. Glover, S. Barnett (Clarendon, Oxford 1989) pp. 1–27

    Google Scholar 

  39. L. Hubert, J. Meuleman, W. Heiser: Two purposes for matrix factorization: A historical appraisal, SIAM Rev. 42, 68–82 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. J.A. Atwell, B.B. King: Reduced order controllers for spatially distributed systems via proper orthogonal decomposition, Virginia Tech. ICAM 99-07-01 (1999)

    Google Scholar 

  41. S. Volkwein: Proper Orthogonal Decomposition and Singular Value Decomposition, Tech. Rep. Institut für Mathematik 153 (Graz University, Graz 1999)

    Google Scholar 

  42. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammerling, A. McKenney, D. Sorensen: LAPACK Userʼs Guide (SIAM third edn. 1999)

    Google Scholar 

  43. N. Aubry: On the hidden beauty of the proper orthogonal decomposition, Theor. Comp. Fluid Dyn. 2, 339–352 (1991)

    Article  MATH  Google Scholar 

  44. E.A. Christensen, M. Brøns, J.N. Sørensen: Evaluation of POD-based decomposition techniques applied to parameter-dependent non turbulent flows, DCAMM Rep. 573 (Technical University of Denmark, Arhus 1998)

    Google Scholar 

  45. G. Berkooz: Turbulence, coherent structures, and low dimensional models, Ph.D. Dissertation (Cornell University, Ithaca 1991)

    Google Scholar 

  46. F. Riesz, B.S. Nagy: Functional Analysis (Ungar, New York 1955)

    Google Scholar 

  47. G. Berkooz, P. Holmes, J.L. Lumley: The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech. 25, 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  48. D. Rempfer, H.F. Fasel: Evolution of three-dimensional coherent structures in a flat-plate boundary layer, J. Fluid Mech. 260, 351–375 (1994)

    Article  Google Scholar 

  49. S. Sanghi: Mode interaction models in near-wall turbulence, Ph.D. Dissertation (Cornell University, Ithaca 1991)

    Google Scholar 

  50. R. Temam: Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Springer, New York 1988)

    MATH  Google Scholar 

  51. A.C. Antoulas, D.C. Sorensen: Approximation of Large-Scale Dynamical Systems: An Overview, Tech. Rep. (Rice University, Houston 2001)

    Google Scholar 

  52. B.G. Allan: A reduced order model of the linearized incompressible Navier–Stokes equations for the sensor/actuator placement problem, ICASE Rep. 2000-19 (NASA, Washington 2000)

    Google Scholar 

  53. N. Aubry, R. Guyonnet, R. Lima: Spatio-temporal analysis of complex signals: Theory and applications, J. Stat. Phys. 64(3/4), 683–739 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  54. J. Delville, L. Cordier, J.-P. Bonnet: Large-scale structure identification and control in turbulent shear flows. In: Flow Control: Fundamental and Practices, Lecture Notes Phys., Vol. 53, ed. by M. Gad-el-Hak, A. Pollard, J.-P. Bonnet (Springer, Berlin, Heidelberg 1998) pp. 199–273

    Google Scholar 

  55. M. Rathinam, L.R. Petzold: A new look at proper orthogonal decomposition, SIAM J. Numer. Anal. 41(5), 1893–1925 (2001)

    Article  MathSciNet  Google Scholar 

  56. W.R. Graham, J. Peraire, K.Y. Tang: Optimal control of vortex shedding using low order models, Part 1: Open-loop model development, Int. J. Numer. Meth. Eng. 44(7), 945–972 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  57. J. Burkardt, M.D. Gunzburger, H.-C. Lee: Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Complex Systems, Tech. Rep. (Florida State University, Tallahassee 2004)

    Google Scholar 

  58. A. Iollo: Remarks on the approximation of the Euler equations by a low order model, INRIA Res. Rep. 3329, 1–28 (1997)

    Google Scholar 

  59. A. Iollo, S. Lanteri, J.-A. Désidéri: Stability properties of POD-Galerkin approximations for the compressible Navier–Stokes equations, INRIA Res. Rep. 3589, 1–30 (1998)

    Google Scholar 

  60. C.W. Rowley: Modeling, simulation and control of cavity flow oscillations, Ph.D. Dissertation (California Institue of Technology, Pasadena 2002)

    Google Scholar 

  61. R.B. Lehoucq, D.C. Sorensen, C. Yang: ARPACK Usersʼ Guide: Solution of Large-Scale Eigenvalve Problems with Implicity Restarted Arnoldi Methods (SIAM 1998)

    Google Scholar 

  62. L. Sirovich: Turbulence and the dynamics of coherent structures, Part 1: Coherent structures, Q. Appl. Math. 45(3), 561–571 (1987)

    MATH  MathSciNet  Google Scholar 

  63. L. Sirovich: Turbulence and the dynamics of coherent structures, Part 2: Symmetries and transformations, Q. Appl. Math. 45(3), 573–582 (1987)

    MathSciNet  Google Scholar 

  64. L. Sirovich: Turbulence and the dynamics of coherent structures, Part 3: Dynamics and scaling, Q. Appl. Math. 45(3), 583–590 (1987)

    MathSciNet  Google Scholar 

  65. L. Cordier: Etude de systèmes dynamiques basés sur la décomposition orthogonale aux valeurs propres (POD), Application à la couche de mélange turbulente et à lʼécoulement entre deux disques contra-rotatifs, Ph.D. Dissertation (Poitiers University, Poitiers 1996)

    Google Scholar 

  66. S. Herzog: The large scale structure in the near-wall of turbulent pipe flow, Ph.D. Dissertation (Cornell University, Ithaca 1986)

    Google Scholar 

  67. P. Moin, R.D. Moser: Characteristic-eddy decomposition of turbulence in a channel, J. Fluid Mech. 200, 471–509 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  68. J. Delville: Characterization of the organization in shear layers via the proper orthogonal decomposition, Appl. Sci. Res. 53, 263–281 (1994)

    Article  Google Scholar 

  69. J.P. Bonnet, D. Cole, J. Delville, M. Glauser, L. Ukeiley: Stochastic estimation and proper orthogonal decomposition: Complementary techniques for identifying structures, Exp. Fluids 17, 307–314 (1994)

    Article  Google Scholar 

  70. C.A.J. Fletcher: Computational Techniques for Fluid Dynamics (Springer, New York 1991)

    MATH  Google Scholar 

  71. D. Rempfer: Investigations of boundary layer transition via Galerkin projections on empirical eigenfunctions, Phys. Fluids 8(1), 175–188 (1996)

    Article  MATH  Google Scholar 

  72. R.D. Joslin, M.D. Gunzburger, R.A. Nicolaides, G. Erlebacher, M.Y. Hussaini: A self-contained, automated methodology for optimal flow control validated for transition delay, ICASE Rep. 95-64, 1–31 (1995)

    Google Scholar 

  73. J.O. Hinze: Turbulence, 2nd edn. (McGraw-Hill, New York 1975)

    Google Scholar 

  74. S. Sirisup, G.E. Karniadakis: A spectral viscosity method for correcting the long-term behavior of POD model, J. Comp. Phys. 194, 92–116 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  75. B.R. Noack, P. Papas, P.A. Monkewitz: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows, J. Fluid Mech. 523, 339–365 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  76. B. Galletti, A. Bottaro, C.-H. Bruneau, A. Iollo: Accurate model reduction of transient and forced wakes, Eur. J. Mech. B 26(3), 354–366 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  77. P. Sagaut: Large-Eddy Simulation for Incompressible Flows – An Introduction (Springer, Berlin, Heidelberg 2005)

    Google Scholar 

  78. G.S. Karamanos, G.E. Karniadakis: A spectral vanishing viscosity method for large eddy simulations, J. Comp. Phys. 162, 22–50 (2000)

    Article  MathSciNet  Google Scholar 

  79. M. Bergmann: Optimisation aérodynamique par réduction de modèle POD et contrôle optimal, Application au sillage laminaire dʼun cylindre circulaire, Ph.D. Dissertation (Institut National Polytechnique de Lorraine, Nancy 2004)

    Google Scholar 

  80. M. Couplet, C. Basdevant, P. Sagaut: Calibrated reduced-order POD-Galerkin system for fluid flow modelling, J. Comp. Phys. 207, 192–220 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  81. J. Borée: Extended proper orthogonal decomposition: A tool to analyse correlated events in turbulent flows, Exp. Fluids 35, 188–192 (2003)

    Article  Google Scholar 

  82. R.J. Adrian: On the role of conditional averages in turbulence theory. In: Turbulence in Liquids, ed. by G. Patterson, J. Zakin (Science, Princeton 1977) pp. 322–332

    Google Scholar 

  83. R.J. Adrian: Conditional eddies in isotropic turbulence, Phys. Fluids 22, 2065–2070 (1979)

    Article  MATH  Google Scholar 

  84. R.J. Adrian, P. Moin: Stochastic estimation of organized turbulent structure: Homogeneous shear flow, J. Fluid Mech. 190, 531–559 (1988)

    Article  MATH  Google Scholar 

  85. A. Papoulis: Probability, Random Variables and Stochastic Theory, 2nd edn. (McGraw-Hill, New York 1984)

    Google Scholar 

  86. R. Deutsch: Estimation Theory (Prentice-Hall, New York 1965) p. 269

    MATH  Google Scholar 

  87. R.J. Adrian, B.G. Jones, M.K. Chung, Y. Hassan, C.K. Nithianandan, A.T.C. Tung: Approximation of turbulent conditional averages by stochastic estimation, Phys. Fluids A 1, 992–998 (1989)

    Article  Google Scholar 

  88. D.R. Cole, M.N. Glauser, Y.G. Guezennec: An application of the stochastic estimation to the jet mixing layers, Phys. Fluids A 4, 192 (1992)

    Article  Google Scholar 

  89. T.C. Tung, R.J. Adrian: Higher-order estimates of conditional eddies in isotropic turbulence, Phys. Fluids 23, 1469–1470 (1980)

    Article  Google Scholar 

  90. H.L. Pécseli, J. Trulsen: A statistical analysis of numerically simulated plasma turbulence, Phys. Fluids B 1, 1616–1636 (1989)

    Article  Google Scholar 

  91. Y.G. Guezennec: Stochastic estimation of coherent structure in turbulent boundary layers, Phys. Fluids A 1, 1054 (1989)

    Article  MathSciNet  Google Scholar 

  92. G.J. Brereton: Stochastic estimation as a statistical tool for approximating turbulent conditional averages, Phys. Fluids A 4, 1046–2054 (1992)

    Article  Google Scholar 

  93. T.G. Bagwell, R.J. Adrian, R.D. Moser, J. Kim: Improved approximation of wall shear stress boundary conditions for large eddy simulations. In: Near Wall Turbulent Flows, ed. by R. So, C.B. Speziale, B.E. Launder (Elsevier, Amsterdam 1993) pp. 265–275

    Google Scholar 

  94. I. Daubechies: Ten Lectures on Wavelets (SIAM, 1992)

    Google Scholar 

  95. M. Farge: Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech. 24, 395–457 (1992)

    Article  MathSciNet  Google Scholar 

  96. S. Mallat: A Wavelet Tour of Signal Processing (Academic, San Diego 1998)

    MATH  Google Scholar 

  97. J.C. van den Berg (Ed.): Wavelets and Physics (Cambridge Univ. Press, Cambridge 1999)

    Google Scholar 

  98. D. Donoho, M.R. Duncan, X. Huo, O. Levi: Wavelab, http://www-stat.stanford.edu/ wavelab (1999)

  99. J. Lewalle, J. Delville, J.P. Bonnet: Decomposition of Mixing Layer Turbulence in coherent structures and background fluctuations, Flow Turb. Comb. 64, 301–328 (2000)

    Article  MATH  Google Scholar 

  100. M.T. Schobeiri, K. Reid, J. Lewalle: Effect of unsteady wake passing frequency on boundary layer transition, experimental investigation and wavelet analysis, J. Fluids Eng. 125, 251–266 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Holger Nobach , Cameron Tropea Dr. , Laurent Cordier , Jean-Paul Bonnet Dr. , Joël Delville Ph.D. , Jacques Lewalle , Marie Farge Dr. , Kai Schneider Dr. or Ronald Adrian Prof. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this entry

Cite this entry

Nobach, H. et al. (2007). Review of Some Fundamentals of Data Processing. In: Tropea, C., Yarin, A.L., Foss, J.F. (eds) Springer Handbook of Experimental Fluid Mechanics. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30299-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30299-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25141-5

  • Online ISBN: 978-3-540-30299-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics